A study was conducted to determine the nutrients digestibility, backfat composition, cut-up parts and organ weights of intact and castrated finishing pigs. Forty eight Large White male pigs with initial average weight of 36.82±0.45 kg were randomly assigned to two treatments with each treatment consisting of three replicates of eight pigs each. Twenty four of the experimental animals were castrated while the remaining twenty four were left intact. Four pigs per replicate were selected and housed in metabolic cages to determine nutrient digestibility and carcass evaluation was performed when the pigs in each experimental group attained an average weight of 70 kg in order to verify the backfat composition, cut-up parts and organ weights. The experiment was arranged in a Completely Randomised Design. Dry matter intake, excreted faeces/dry matter intake, dry matter digestibility, crude protein digestibility, nitrogen intake, absorption and retention were significantly (P<0.05) influenced by state of boar. Castrated boars had higher mean values in these parameters except in excreted faeces/dry matter. Intact boars had higher significant (P<0.05) mean values in liver (1.98%), kidney (0.20%) and heart (0.22%) weights in comparison with the corresponding values (1.57, 0.12 and 0.12%, respectively) recorded for castrated boars. Subcutaneous fat depth and fat free index were significantly (P<0.05) influenced by state of boars. Intact boar recorded better value (49.07) for fat free index when compared to 43.46 obtained by the castrated boar. It was concluded that state of boar had effect on nutrient digestibilities, organ weights (liver, kidney and heart weights) and backfat deposits (subcutaneous fat depth and fat free index) of finishing pigs.

Key words
castrated, digestibility, intact, nutrient, subcutaneous fat

Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
✉ e-mail: ncfred0859@yahoo.co.uk
Received: October 29, 2013 | Accepted: June 5, 2014
Introduction

Attaining and sustaining food security are among the major goals of world leaders across the globe. About 842 million people in the world were unable to meet their nutritional requirements in 2013 (FAO et al., 2013). Governmental programmes, policies and projects are therefore aimed at ensuring regular food supply (especially those with high biological values like animal protein), local availability of foodstuffs, food safety, affordability and accessibility. These goals have mounted pressure on livestock industries in devising means of increasing productivity and as well meeting the consumers’ preference. Consumer preferences are changing on regular basis and demand is moving away from traditional heavily fatted breeds of livestock to light leaner breeds.

High demands for lean pork and producers’ interest in attaining production efficiency have inspired the pork industry to look into new strategies to improve lean accretion in pigs meant for pork production. Castration of male piglets is one of the management practices done way back to human domestication of animals (Xue et al., 1997). It is done in most parts of the world for several reasons including control breeding, removal of boar taint, increased docility and increasing utility in pork consumption by meeting up with consumers’ preference. About 75% of consumers find boar taint offensive due to its unpleasant smell and taste (Banon et al., 2004). Androstenone (largely secreted in the testis) and skatole (produced by bacteria in the intestine of pigs) are compounds primarily responsible for boar taint which are stored in the fat tissues of the pigs (Xue and Dial, 1997).

Literature is dotted with growth performance and carcass characteristics differences between castrated and intact boars. It has been documented that intact boars have reduced feed intake, improved feed efficiency, less backfat and leaner carcass when compared with their castrated counterparts (Njoku et al., 2013). The improved growth performance and carcass characteristics of intact boars are primarily due to the anabolic effects of androgens and estrogens produced in the testes (Hancock et al., 1991; Sawyer and Barker, 1988). Although, adequate information exist in literature on growth performance and carcass characteristics differences between castrated and intact boars, yet only a hand full of information exist on nutrient digestibility and organ weight of castrated and intact boars. Hence, this study is aimed on investigating the differences in nutrient digestibility, cut-up parts, backfat deposition and organ weights of castrated and intact boars.

Materials and methods

Experimental animals and their management

This study protocol was approved and conducted in accordance with the Animal Ethics Committee guidelines of the Federal University of Agriculture, Abeokuta, Nigeria. It was carried out at the piggy unit of the Directorate of University Farms, Teaching and Research Section of the University. Forty-eight (48) weaner Large White male pigs with mean body weight of 36.82 ± 0.45 kg were assigned to two treatments in a completely randomized design. The pigs were grouped based on weight equalization to two treatments (castrated and intact) of twenty four (24) pigs each. Each treatment was replicated thrice to consist of eight pigs per replicate. Twenty four of the experimental animals were castrated by surgical method while the other twenty four were left intact. The pigs were housed in a naturally ventilated individual pen with floor size area of 2 m² and were individually fed. Fresh water was supplied daily ad libitum.

Dietary treatment

Feeding was carried out at 07:00 and 13:00 hours each day throughout the experimental period. The carcass analysis was carried out when the pigs attained the average slaughtering weight of ≥70 kg. Diets were formulated to meet the body requirements of growing pigs. The ration contained 16.48% crude protein and metabolisable energy of 2986.70 kcal DE/kg (Auto Feed Formulator Master, NRC) as shown in Table 1. The diet was based on feed composition used for finishing pigs at Teaching and Research Farm of Federal University of Agriculture, Abeokuta that was developed in line with the recommendation of Merck (2011).

Digestibility study

Four pigs with average body weights of 56.82±0.45 kg from each replicate were selected and arranged in clean, disinfected metal metabolic cages in between the experiment. A 7-day adaptation period followed a 5-day of quantification of feed intake, excreted faeces and urine. Faeces and urine were collected quantitatively and stored frozen until analyzed. To avoid ammonia losses, urine was collected into bottles with H₂SO₄ (20%, v/v) to keep pH below 3. After the collection periods, faeces and urine were thawed and homogenized separately. Faeces were dried in a forced air cabinet. Sub samples of 200 g (faeces) and 50 ml (urine) were taken and stored frozen until analyzed. The oven-dried faeces and feed materials were milled to 2 mm particle size and analysed for their proximate constituents. Following AOAC (2005) protocols, the dry matter of the samples was determined by drying at 105°C for 4 hours. The crude protein (CP) concentration of samples was determined by the Kjeldahl method and the ether extract by a Soxhlet apparatus. The crude fibre (CF)
concentration was determined using trichloroacetic acid digestion reagent, and concentration of ash was determined by incinerating samples at 550°C for 5.5 hours.

Cut parts, organ weights and backfat measurements of intact and castrated boars

For the evaluation of above parameters, two pigs with average body weight of 70 kg per replicate were selected and slaughtered in order to determine the cut parts, organ weights and backfat composition at the end of the experiment. The pigs were fasted for 16 hours, and the fasted weight of each pig meant for slaughtering was taken before they were stunned by percussion method and bled by incision using a sharp knife cutting through the jugular vein between the skull and the atlas. Complete bleeding and dehairing were done. The stomach of the pigs was opened along the greater curvature and emptied. The head was removed by section at the occipito-atlas joint and the feet by sawing through the hock joint at a right angle to the long axis of the leg. The carcass was divided longitudinally. The left half of the carcass was dissected as described by Barca et al. (2006). Ham was separated by locating the division between the 2nd and 3rd sacral vertebrae and saw perpendicularly along axis of the ham. Shoulder of the pig was separated from the loin and belly by a straight cut between the second and third ribs and a straight cut 2.5 cm ventral to the ventral edge of the scapula. The parts were weighed and recorded. The visceral organs were removed and weighed using digital sensitive scale. Back-fat depth was taken at the last rib using vernier calliper. The fat-free index was estimated using the formulae postulated by National Pork Producers Council (2000). Fat-free index = 50.767 + (0.035 x hot carcass weight, kg) – (8.979 x last rib midline back-fat on hot carcass, cm).

Statistical analysis

Studentized t-test at 5% significant level was used to compare means between variables.

Results

Effect of state of boar on nutrient digestibility of finishing pigs

Feed intake, dry matter intake, excreted faeces/dry matter intake, dry matter digestibility, crude protein digestibility, ether extract, crude fibre digestibility and ash were significantly (P<0.05) different as depicted in Table 2.

The castrated boar recorded higher mean values on feed intake (1.67 kg/day), dry matter intake (1.56 kg/day), dry matter digestibility (74.32), crude protein digestibility (79.64), ether extract (78.04), crude fibre (53.83) and ash (46.45) while their lower corresponding values 1.25 kg/day, 1.18 kg/day, 68.84%, 76.72%, 61.53%, 32.51% and 36.13%, respectively were noted for the intact boar. The higher excreted faeces/dry matter intake of 34.68 g/day of nitrogen intake compared to 39.77 g/day of intact boar.

Effect of state of boar on nitrogen balance of finishing pigs

The nitrogen intake, nitrogen absorption and nitrogen retention were significantly (P<0.05) influenced by the state of boar (Table 3). Castrated boar had higher value of 39.77 g/day of nitrogen intake compared to 34.68 g/day of the intact boar.

The higher nitrogen absorption (31.76%) and nitrogen retention (28.70%) were obtained by the castrated boar while the intact boar had 27.63% and 24.79% in that order.

Effect of state of boar on back fat composition of finishing pigs

As depicted in Table 4, subcutaneous fat depth “C” and “K” and fat free index were significantly (P<0.05) influenced by state of boar. The castrated boars recorded the highest subcutaneous fat depth “C” (1.37 cm) compared to 1.01 cm obtained for the intact boars. The subcutaneous fat depth “K” ranges from 1.54 cm (intact boars) to 2.55 cm (castrated boars). The intact boars had higher (P<0.05) fat free index value of 49.07 compared to 43.46 of castrated boars. Castrated boars recorded higher longissimus dorsi muscle “A” (7.70 cm) when compared to 7.08 cm noted for the intact boars. Also, higher numerical values were recorded among the castrates in longissimus dorsi muscle “B”, fat at first and last ribs.

Cut-up parts and organ weights of castrated and intact finishing pigs

The effect of state of boar on cut parts and organ weights of finishing pigs is presented in Table 5. Fasted weight was significantly (P<0.05) affected by the boar type. Higher fasted weight (73.67, 67.00 kg) was recorded for the castrated boar. Similar statistical mean values (P>0.05) were observed in all the parameters.
Table 4. Effect of state of boar on back fat composition of finishing pigs

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Intact boar</th>
<th>Castrated boar</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live weight (kg)</td>
<td>69.33</td>
<td>76.17</td>
<td>2.07</td>
</tr>
<tr>
<td>Hot carcass weight (kg)</td>
<td>54.58</td>
<td>59.55</td>
<td>2.16</td>
</tr>
<tr>
<td>Longissimus dorsi muscle ‘A’ (cm)</td>
<td>7.08</td>
<td>7.70</td>
<td>0.22</td>
</tr>
<tr>
<td>Longissimus dorsi muscle ‘B’ (cm)</td>
<td>3.70</td>
<td>4.34</td>
<td>0.20</td>
</tr>
<tr>
<td>Depth of fat at first rib (cm)</td>
<td>3.03</td>
<td>4.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Depth of fat at last rib (cm)</td>
<td>1.67</td>
<td>2.24</td>
<td>0.14</td>
</tr>
<tr>
<td>Subcutaneous fat depth ‘C’ (cm)</td>
<td>1.01b</td>
<td>1.37a</td>
<td>0.09</td>
</tr>
<tr>
<td>Subcutaneous fat depth ‘K’ (cm)</td>
<td>1.54b</td>
<td>2.55a</td>
<td>0.10</td>
</tr>
<tr>
<td>Fat free index</td>
<td>49.07a</td>
<td>43.46b</td>
<td>0.49</td>
</tr>
</tbody>
</table>

ab - means within rows followed by different superscripts are significantly (P<0.05) different; “A” (cm) Maximum width of the longissimus dorsi muscle at the widest point; “B” (cm) Maximum of the longissimus dorsi muscle at the greatest depth and perpendicular to the point A measurement; “C” (cm) Subcutaneous fat depth immediately above the B measurement; “K” (cm) Subcutaneous fat depth at the dorsolateral edge of the Longissimus dorsi muscle

Table 5. Effect of state of boar on carcass characteristics of finishing pigs

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Intact boar</th>
<th>Castrated boar</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut parts (% Live weight)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head weight (%)</td>
<td>9.47</td>
<td>9.24</td>
<td>0.34</td>
</tr>
<tr>
<td>Ham weight (%)</td>
<td>12.76</td>
<td>11.99</td>
<td>0.45</td>
</tr>
<tr>
<td>Shoulder weight (%)</td>
<td>10.46</td>
<td>10.57</td>
<td>0.46</td>
</tr>
<tr>
<td>Fore-leg weight (%)</td>
<td>0.85</td>
<td>0.73</td>
<td>0.05</td>
</tr>
<tr>
<td>Hind-leg weight (%)</td>
<td>1.14</td>
<td>1.06</td>
<td>0.04</td>
</tr>
<tr>
<td>Offal weight (% Live weight)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver weight (%)</td>
<td>1.98a</td>
<td>1.57b</td>
<td>0.04</td>
</tr>
<tr>
<td>Lung weight (%)</td>
<td>0.79</td>
<td>0.79</td>
<td>0.03</td>
</tr>
<tr>
<td>Kidney weight (%)</td>
<td>0.20a</td>
<td>0.12b</td>
<td>0.01</td>
</tr>
<tr>
<td>Heart weight (%)</td>
<td>0.22a</td>
<td>0.12b</td>
<td>0.01</td>
</tr>
<tr>
<td>Spleen weight (%)</td>
<td>0.18</td>
<td>0.09</td>
<td>0.03</td>
</tr>
</tbody>
</table>

ab - means within rows followed by different superscripts are significantly (P<0.05) different

Discussion

Castrated boars had a higher rate of feed consumption, resulting into higher dry matter intake. This might be due to the energy requirement of castrated boars that is higher than that of intact boars; since the energy requirement for fat accretion is more than the energy required for protein accretion. This observation is in agreement with the findings of Ravi et al. (1999) and Balaji et al. (2006) who reported that the average daily dry matter intake was more in castrated boars than the intact ones. It contradicted the findings of Niba et al. (2005) who reported no significant difference in daily dry matter intake of castrated and intact boars.

Several factors have been investigated as influencing digestive indices in pigs. Some of these factors include sex, body weight, age (Everts et al., 1986; Noblet et al., 1993a), genotype and diets (Boorman, 1980). Result of nutrient digestibility coefficients in this study showed that significant differences existed between castrated and intact boars in dry matter, crude protein, ether extract, crude fibre digestibilities, excreted faeces/dry matter intake and ash. The higher digestibility coefficients noticed in dry matter might be attributed to the weight difference between the castrated and intact boars, as it has been well documented that dry matter digestibility increased with higher body weight gain in pigs (Lemus et al., 2010; Morel et al., 2006; Le Goff and Noblet, 2001; Noblet et al., 1993b). Also, higher digestibility values in crude fibre, ether extract, crude protein and ash in castrated than intact boars might be traced to increased weight of castrated boars (Noblet and Le Goff, 2001) or an increased size of the hindgut with increasing live weight and feed intake of the animals, leading to a lower rate of digesta passage and increased degradation of undigested carbohydrates in the large intestine (Noblet and Le Goff, 2001). These changes will improve the ability of the pigs to digest dietary fibre and consequently energy and protein, which are the primary need of the pig for growth. The findings in this study contradicted the observation of Wenk and Morel (1985) who observed no changes of importance between castrated and intact boars when digestibility coefficient was evaluated.

There was no significant difference between castrated and intact boars for faecal nitrogen and urinary nitrogen output. This might be due to the same diet fed to the animals that had no variability in composition. Ly (2008) also did not find any effect of sex on faecal nitrogen and urinary nitrogen output. The significant difference observed in nitrogen intake between castrated and intact boars might be linked to the level of feed intake, as the slightest increase in feed intake will invariably increase the crude protein intake by pig. Hansen and Lewis (1993) reported that nitrogen intake increased linearly as dietary level increased for all sexes, and there was an increase in nitrogen intake as the pigs gained weight. It was observed that the castrated boars had higher nitrogen absorption when compared with intact boar. This could be linked with increase in nitrogen digestibility that was observed in the castrated boars during the growing period. There is a positive relationship between nitrogen digestibility and nitrogen absorption, so the higher the nitrogen digestion, the higher the absorption (Fuller and Chamberlin, 1983; Hansen and Lewis, 1993). The higher nitrogen retention in the castrated boar than in the intact might stem from the corresponding increase in endogenous nitrogen losses (Blank, 2009) that were more in castrated boar than in the intact boar. Endogenous nitrogen have been defined as digestive secretions and sloughed epithelial cells released in the lumen of the intestine of pigs, and almost one quarter of which is not reabsorbed before reaching the end of the ileum (Souffrart, 1991).

From the digestibility study of this current experiment, intact boar had higher tendency of retaining nitrogen over a period of

acs
time than castrated boar (barrow) from the diet formulated. It has been documented that barrows had inherent lower capacity for protein deposition and a higher rate of fat accretion, and require less dietary protein and amino acids to support maximum growth than intact boars (Xue et al., 1997; Yen et al., 1986 a, b; Campbell et al., 1985; Williams et al., 1984). The result obtained from this study is in agreement with these findings. The barrows had higher numerical values in fat at first and last ribs, though not significant. Significant values obtained in the subcutaneous fat (C and K) with castrates having higher values could indicate the fact that absence of sexual hormones would have favoured the deposition of fat (Niba et al., 2005). Several other authors (Latorre et al., 2004; Hamilton et al., 2000; Ellis et al., 1996; Leach et al., 1996) reported that carcasses from barrows were fatter when compared to the carcasses from gilts. Xue et al. (1997) stated that amino acid requirements for lean accretion are higher for intact boars than barrow littermates. Since, intact boars and barrows were fed the same diet; the intact boars must have utilized the protein and energy components of the diet more efficiently for lean accretion than the barrows. This attests to the significant value obtained in fat free index. Xue et al. (1997) documented that the improvements in growth and carcass characteristics of intact boars were primarily due to anabolic effects of androgens and estrogens produced in the testis.

All measurements for primal cuts were largely similar with the intact boars having higher numerical values in head, ham, fore-leg and hind-leg weights. The higher values could indicate the implication of sexual hormones in the growth and development of muscle and bone metabolism (Niba et al., 2005). Likewise, the internal organs like the liver, kidney and heart weights were significantly influenced by sex, with the higher values documented for the intact pigs. The greater values in the internal organs could be a result of compensatory growth that occurs principally in internal organs (Heyer and Lebret, 2007; Bikker et al., 1996; Mersmann et al., 1987). This compensatory growth is due to an improved feed conversion ratio that occurred without an increased feed intake (Oksbjerg et al., 2002; Therkildsen et al., 2004). This could explain the similar carcass weight obtained in this study.

**Conclusion**

Better nutrient digestibilities (dry matter, crude protein, ether extract, crude fibre digestibilities, nitrogen intake, absorption and retention) were recorded for castrated boars while intact boars had better visceral organs, subcutaneous fat (fat depth and fat free index) in this present study. Hence, castrated boars can be slaughtered at lighter body weight and age for leaner carcass since it has better nutrient digestibilities than their intact counterparts.

**References**


Banon, S., Andreu, C. and Laencina, J. 2004. Fresh and eating pork from entire and castrate heavy males. *Food Quality and Preference* 3: 293-300

Barca, R., Nieto, R., Lara, L., Garcia, M.A., Vilchez, M.A., Aquilera, J.F. 2006. Effects of dietary protein content and feeding level on carcass characteristics and organ weights of Iberian pigs growing between 50 and 100 kg liveweight. *Animal Science* 82: 405-413


Fuller, M.F. and Chamberlin, A. G. 1983. Protein requirements of pigs. *In: Recent advances in animal nutrition (W. Haresign ed.) Butterworths.* London Pp. 175-186


