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Summary

In this study thin-layer drying characteristics of tomato were investigated 
using a hot air convective dryer at a constant airfl ow velocity of 0.8 m s-1 and 
air temperature in the range of 50-70°C. Th e experimental drying data were 
fi tted to the four well-known drying models i.e. the Page, Henderson and Pabis, 
logarithmic and two term models. Th e statistical validity of fi t was measured 
using the coeffi  cient of determination, mean relative percent deviation, root 
mean square error and reduced chi-square. Of all four models, the logarithmic 
model proved to be the best for predicting drying behaviour of tomato with 
values of coeffi  cient of determination R2 greater than 0.99. Th e eff ective 
diff usivity was determined to be in the range of 2.56-4.28x10-9 m2 s-1 for non-
treated samples and 4.29-6.28x10-9 m2 s-1 for blanched ones in the temperature 
range of 50-70°C. Th e temperature dependence of the eff ective diff usivity was 
described by the Arrhenius-type relationship. Th e activation energy values for 
non-treated and blanched samples were 23.73 and 17.55 kJ mol-1, respectively. 
Also, air temperature and pre-treatment aff ected the quality parameters of 
dried tomato.
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Introduction
Tomato is considered one of the most important veg-

etables. It is grown worldwide on variety of soils and cli-
matic conditions. Over 100 million tonnes of tomato are 
produced in the world from about four million ha of land. 
USA, China, Turkey, Italy, and Spain are the leading tomato 
growing countries. Turkey ranks third among tomato 
producing countries in the world aft er China and USA in 
2002 (FAO, 2003). Tomato is a good source of vitamins 
and minerals. Lycopene, the predominant carotenoid pig-
ment of tomato contributes to its characteristic red colour. 
It functions as an anti-oxidant and helps in lowering DNA 
damage. Th ese properties have accelerated research activ-
ities to improve processing factors that lead to maintain 
the nutritional as well as sensory quality of tomato prod-
uct. Nutritional and sensory quality of tomato products 
are primarily aff ected by cultivar, growing conditions, and 
processing parameters (Kaur et al., 1999). 

Th e vegetables and fruits contain a high percentage 
of their fresh weight as water. Accordingly, they exhibit 
relatively high metabolic activity compared with other 
plant-derived foods such as seeds. Th is metabolic activ-
ity continues aft er harvesting, thus making most fruits 
highly perishable commodities. One of the simplest meth-
ods used to improve the shelf life of agricultural products 
is to reduce their moisture content to such extent that the 
micro organism can not grow. Drying is a classical method 
of food preservation and it is a diffi  cult food processing 
operation mainly due to undesirable changes in quality 
of dried product (Maskan, 2000). Th e basic objective of 
drying agricultural products is the removal of water in the 
solids up to certain level, at which microbial spoilage and 
deterioration chemical reactions are greatly minimised 
(Krokida and Marinos-Kouris, 2003). Tomato fi nds various 
uses in both fresh and processed forms. Processed forms 
include ketchup, sauces, pastes, juice and dried products. 
Th e dried tomato products are usually used as components 
for pizza and various vegetable and spicy dishes (Zanoni 
et al., 1999). Th e interest in production of dried tomato is 
continuously increasing in Turkey. Also, tomato drying 
methods include the foam-mat technique, spray drying, 
sun drying and hot air drying. 

Th e study of the drying behaviour of tomato has been 
a subject of interest for various investigators such as 
Olorunda et al. (1990), Hawlader et al. (1991), Baloch et 
al. (1997), Shi et al. (1999), Zanoni et al. (1999), Giovanelli 
et al. (2002) and Telis et al. (2003). Th e effi  cient process-
ing and long-term storage of tomato requires reducing of 
the moisture content to suitable levels by various drying 
methods. Th e present study was undertaken to investigate 
the thin layer drying characteristics of tomato using a hot 
air dryer and to fi t the experimental data into mathemati-
cal models available in literature. 

Material and methods
Materials
Th e tomatoes (cv. Milen) used in this study were ob-

tained from Department of Plant Protection, Faculty of 
Agriculture, Ankara University, Turkey during the summer 
season of 2003. Ripe, well-coloured and sound tomatoes 
were harvested by hand and stored in a refrigerator at 4ºC 
until drying experiments. Aft er 1 hour stabilization at an 
ambient temperature, homogenous samples were rinsed 
with tap water and cut into halves with a knife. Tomato 
samples for drying experiments were classifi ed in two 
groups: blanched and non-treated ones. Th e tomato halves 
were immersed in boiling water at 90ºC for 1 min and then 
brined by steeping in 10% salt solution for 10 min. Both 
of these processes were named as blanched samples. Th e 
other group was only dipped in salt solution for 10 min and 
denoted as non-treated samples. Out of ten halves, seven 
halves were used for drying measurement. Th e average 
weight of the sample used was about 250 g. Th e remain-
ing three halves were used for determination of the initial 
moisture content of the tomato samples by the vacuum 
oven method at 70°C for 24 h (AOAC, 1990).

Experimental apparatus
A laboratory scale hot air dryer was used in drying 

experiments (Figure 1). Th e dryer essentially consists of 
an adjustable centrifugal blower, with a power of 100 W, 
air heating duct, drying chamber and weighing system. 
Air supplied by the centrifugal blower was heated to the 
required temperature in air heating duct. Th e air veloc-
ity was changed by regulating the variable transformer, 
which changed the fan speed. Th e air velocity was meas-
ured using a hot-wire anemometer with the measurement 
range of 0-5 m s-1. Air velocity was measured directly 
in the drying chamber. A 2850 W electrical heater was 
placed inside air heating duct. Th e air heating duct was 
constructed from galvanised metal sheets in the form of a 

Figure 1. 
Experimental setup of laboratory dryer: 1, centrifugal blower; 
2, air heating duct; 3, drying chamber; 4, perforated floor; 
5, electronic balance; 6, holding wire; 7, sample basket; 8, 
sensors; 9, Pc; ; door
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cylinder 110 mm in diameter and 400 mm in length. Th e 
temperature and relative humidity in the drying chamber 
was measured by SHT11 relative humidity and tempera-
ture sensor. Th e temperature was controlled to ±1°C using 
suitable controller and specially designed soft ware. During 
the drying process, the temperature and relative humidity 
in drying chamber were continuously recorded at 1 min 
intervals throughout runs with the help of this soft ware 
connected to a PC. Th e drying chamber, of 1000x500x500 
mm3, was made from a galvanised metal sheet of 1.5 mm 
thickness having a single door opening at the front for in-
sertion and removal of sample. A perforated fl oor, having 
dimension of 1000 mm by 500 mm, was fi tted inside the 
drying chamber for streamlining the airfl ow. Th e drying 
chamber as well as the air heating duct was covered with 
30 mm rock wool and aluminium foil to prevent unneces-
sary heat losses to the surroundings during the test runs. 
Th e weighing system consisted of an electronic balance 
and sample basket having dimension of 50 mm in depth 
and 300 mm in diameter. Th e bottom of the basket had a 
perforated fl oor. Th e electronic balance, having an accu-
racy of 0.01 g, was placed outside the drying chamber. Th e 
sample basket, in which the tomato samples were evenly 
put as a single layer, was attached to the electronic balance 
by the sample holding wire. 

Drying procedures
Th e drying experiments were conducted at 50, 60 and 

70°C air temperatures and at a constant airfl ow velocity 
of 0.8 m s-1. In each experiment, about 250 g of tomato 
samples were used. Aft er the system was run for at least 
half an hour to reach steady conditions for the operation 
temperatures, the samples were uniformly put into the 
sample basket as a single layer and dried there. Moisture 
losses of samples were recorded at 30 min intervals for 
fi rst hour and 1 h subsequently thereaft er for determi-
nation of drying curves. Drying was continued until no 
further changes in their mass were observed (about 11% 
d.b.). Th e dried samples were allowed to cool down at an 
ambient temperature for 30 min and then packed in low-
density polyethylene bags for determination of colour and 
rehydration ratio.

Th e colour characteristics and rehydration ratio were 
considered as the most important quality parameters for 
the dried tomato samples in this study. Th e colour is one 

of the most important properties of agricultural products. 
Colour evaluation of blanched and non-treated tomato 
samples was determined using a Hunterlab colour diff er-
ence meter, which measures three parameters: lightness 
L, redness +a and yellowness +b together with the ratio 
+a/+b, which represents colour quality. In terms of de-
sired tomato colour properties, higher L and higher +a and 
lower +a/+b are preferred. Th e colour of dried tomato sur-
face was measured using a Minolta CR-300 Chromameter. 
It was calibrated each time with a standard white plate. 
Measurements were individually taken for fi ve samples 
and the average of fi ve readings was calculated.

Th e rehydration ratio was used to express the ability of 
the dried material to absorb water. A sample (~5 g) of the 
dried tomato was weighed (initial weight) into a 500 ml 
beaker containing 150 ml of distilled water and boiled for 
5 min. Aft er rehydration, the sample was weighed (fi nal 
weight). Th e rehydration ratio was obtained by dividing 
the rehydrated weight by the initial weight (Prakash et 
al., 2003).

Mathematical modelling
Mathematical modelling is essential to predict and 

simulate the drying behaviour. It is also an important tool 
in dryer’s design, contributing to a better understanding 
of the drying mechanism. Experimental drying data was 
applied to four well-known drying models i.e. the Page, 
Henderson and Pabis, two term and logarithmic models 
(Table 1). Th e drying rate constants and coeffi  cients of 
models were estimated using a non-linear least squares 
regression solved by a Quasi-Newton numerical method. 
Fit of these models was evaluated with the coeffi  cient of 
determination R2, mean relative percent deviation EMD, 
root mean square error ERMS and reduced chi-square χ2. 
Th ese comparison criteria methods can be calculated as 
follows:
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Model name Model References 
Page MR = exp(-ktm) Agrawal and Singh (1977), Diamante and Munro (1993)  
Henderson and Pabis MR = a exp(-kt) Westerman et al. (1973) Chhinman (1984) 
Logarithmic MR = a exp(-kt) + c Toğrul and Pehlivan (2003) 
Two term MR = a exp(-kt) + b exp(-k0t) Henderson (1974), Madamba et al. (1996) 

MR, moisture ratio (dimensionless); k and k0, drying rate constants in h-1; a and b, coefficients (dimensionless); m, exponent; t, drying time in h 

Table 1. Mathematical models given by various workers for drying curves
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where: MR,ex,i is the ith experimental dimensionless 
moisture ratio; MR,pre,i is the ith predicted dimensionless 
moisture ratio; N is the number of observations; and z is 
the number of constants.

R2 was used as the primary comparison criteria for 
selecting the best model to fi t the four models to the ex-
perimental data. Also, the lower values of the mean rela-
tive percent deviation EMD, the root mean square error 
ERMS and the reduced chi-square χ2 were chosen as the 
comparison criteria for the evaluation of fi t of the experi-
mental data obtained.

Results and discussion
Drying curves
Tomato of average initial moisture content of around 

14.02 kg [H2O] kg-1 [dry matter] was dried to the fi nal mois-
ture content of about 0.11 kg [H2O] kg-1 [dry matter] until 
no further changes in their mass were observed. Figures 2 
and 3 present the variations in the moisture content as a 
function of drying time at various air temperatures for non-
treated and blanched samples, respectively. As expected, 
the drying time decreased considerably with an increase 
in the air temperature. Th e times needed to reach the fi nal 
moisture content for non-treated samples were 32, 26 and 
20 h at air temperatures of 50, 60 and 70ºC, respectively. 
Corresponding values for blanched samples were 22, 17 
and 12 h at drying air temperatures of 50, 60 and 70ºC, re-
spectively. Blanched tomato samples were found to have a 
shorter drying time compared to non-treated ones. Boiling 
prior to drying showed that the drying time decreased by 
44.4, 52.9 and 66.6% at air temperatures of 50, 60 and 70ºC, 
respectively. Consequently, it can be concluded that boil-
ing reduced the drying time. Similar results have been re-
ported by Doymaz (2003) for white mulberry and Ertekin 
and Yaldiz (2004) for eggplant. 

Calculation of eff ective diff usivity and activation 
energy
Th e eff ective diff usivity of the samples is estimated by 

using the simplifi ed mathematical Fick’s second diff usion 
model. Th e solution of Fick’s second law in slab geometry, 
with the assumption that moisture migration was caused 
by diff usion, negligible shrinkage, constant diff usion coef-
fi cients and temperature was as follows (Crank, 1975):

2

22

1
22

0 4
)12(

exp
)12(

18
H

tDn
nMM

MM
M eff

ne

e
R (4)

For long drying periods, Eqn (4) can be further sim-
plifi ed to only the fi rst term of the series and the moisture 
ratio MR was reduced to M/M0 because Me was relatively 
small compared to M and M0. Th en, Eqn (4) can be writ-
ten in logarithmic form:
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where: MR is the dimensionless moisture ratio; M, Me 
and Mo are the moisture content at any time, the equilib-
rium moisture content and the initial moisture content 
in kg [H2O] kg-1 [dry matter], respectively; H is the half-
thickness of the slab in sample in m; n is a positive integer; 
and Deff  is the eff ective diff usivity in m2 s-1.

Th e eff ective diff usivity is typically calculated by plot-
ting experimental drying data in terms of ln(MR) versus 
drying time. From Eqn (5), a plot of ln(MR) versus the 
drying time gives a straight line with a slope of:

2

2

4
Slope

H
Deff          (6)

Th e values of Deff  for non-treated and blanched sam-
ples are presented in Table 2. From this, it can be seen 
that the air temperature and pre-treatment had eff ect on 
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Figure 2. 
Effect of air temperature on the moisture content of non-
treated samples at an airflow velocity of 0.8 m s-1 and various 
air temperatures: ■, 50°C; ●, 60°C; ▲, 70°C

Figure 3. 
Effect of air temperature on the moisture content of blanched 
samples at an airflow velocity of 0.8 m s-1 and various air 
temperatures: ■, 50°C; ●, 60°C; ▲, 70°C
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the eff ective diff usivity. Th ese values are comparable with 
the reported values: 1.5x10-9 m2 s-1 for raisin (Lomauro et 
al., 1985), 2.02x10-9 m2 s-1 for hot air drying of paprika at 
60ºC (Ramesh et al., 2001) and 1.79-4.45x10-9 m2 s-1 for 
apple slices at 60°C (Velic et al., 2004). Giovanelli et al., 
(2002) reported that the values of Deff  varied from 2.26 to 
9.14 x10−9 m2 s-1 as a function of the structure of tomato 
products for hot air drying. Th ese values are consistent 
with the present estimated Deff  values for tomatoes.

Th e temperature dependence of the eff ective diff usivity 
can be described by the Arrhenius-type relationship:

 RT
E

DD a
eff exp0          (7)

where: D0 is the pre-exponential factor of the Arrhenius 
equation in m2 s-1; Ea is the activation energy in kJ mol-1; 
R is the universal gas constant in kJ mol-1 K-1 and T is the 
absolute air temperature in K.

Th e activation energy was calculated by plotting the 
natural logarithm of Deff  versus reciprocal of the abso-
lute temperature as presented in Figure 4. Th e plot was 
found to be a straight line in the range of air temperatures 
studied, indicating Arrhenius dependence. Th e activation 
energy for diff usion calculated from the slopes of straight 
lines of Figure 4 was determined to be 23.73 kJ mol-1 with 
a value for R2 of 0.9911 for non-treated samples and 17.55 
kJ mol-1 with a value for R2 of 0.9958 for blanched ones. 
Th ese values are within the range of 15-40 kJ mol-1 for 
various foods reported by Rizvi (1986).

Modelling of drying curves
Th e results of nonlinear regression analysis of fi tting 

the four mathematical drying models to the experimental 
data and comparison criteria used to evaluate goodness 
of fi t namely, R2, EMD, ERMS and χ2 for non-treated sam-
ples at 50°C air temperature are presented in Table 3. All 
models provided an adequate fi t to the experimental data 
with a value for R2 of greater than 0.99, indicating a good 
fi t. However, the values for EMD obtained from the Page and 
logarithmic models are less than 10% in all cases, which is 
in the acceptable range. Also, the logarithmic model gave a 
higher value of R2 and lower values for the EMD, ERMS and 
χ2 than the Page model. For this reason, the logarithmic 
model may be assumed to represent the thin-layer drying 
behaviour of tomato within the experimental study range. 
Figures 5 and 6 suggest the experimental moisture ratios 
fi tted with the logarithmic model at various air tempera-
tures for non-treated and blanched tomato samples, respec-
tively. Th is shows there was a good conformity between 
experimental and predicted moisture ratios.

Evaluation of quality parameter
Colour evaluation of L, +a and +b together with the ratio 

+a/+b of non-treated and blanched samples are present-
ed in Table 4. From this, it can be seen that pre-treatment 
and air temperature have a signifi cant eff ect on the colour 
of dried samples. L and +a values for blanched samples 
at the examined air temperatures were lower than those 
for non-treated samples. L and +a values for non-treated 
samples at all drying air temperatures ranged from 30.95 
to 33.39 and 20.69 to 23.10, respectively. Corresponding 
values for blanched samples varied from 29.01 to 31.64 and 
15.90 to 20.46, respectively. Colour quality values did not 
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Figure 4. 
Arrhenius-type relationship between the effective diffusivity 
and absolute temperature: ■, blanched samples; ▲, non-treated 
samples

 Air temperature, C Effective diffusivity  
(Deff ), m2 s-1 

Non-treated 50 2.56x10-9 
 60 3.48 x10-9 
 70 4.28 x10-9 
Blanched 50 4.29 x10-9 
 60 5.11 x10-9 
 70 6.28 x10-9 

Model Value of 
parameter 

Coefficient of 
determination (R2) 

Page k 0.0587 0.9957 
 m 1.1504  
Henderson and Pabis a 1.0368 0.9909 
 k 0.0903  
Logarithmic a 1.1173 0.9995 
 k 0.0681  
 c -0.1206  
Two term a 0.4187 0.9901 
 k 0.0903  
 b 0.6180  
 k0 0.0903  

Table 2. Values of eff ective diff usivity at various air 
temperatures for non-treated and blanched samples

Table 3. Parameter estimation, R2, EMD, ERMS and χ2 of the 
four mathematical drying models fi tted to the experimental 
drying data of non-treated tomato at an air temperature of 
50°C
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change substantially but the lowest values for +a/+b were 
shown at 50°C air temperature. Non-treated samples had 
more red colour and were lighter than blanched ones. L 
and +a values decreased with increased air temperatures. 
As a result, the desired colour on dried tomato surface was 
better at lower temperatures. Similar results have been ob-
served by Shi et al. (1999).

Table 5 shows the variation of rehydration ratio for 
non-treated and treated samples at 50, 60 and 70ºC air 
temperatures. Th e rehydration ratio was aff ected by the 
pre-treatment and drying air temperature. Th e rehydra-
tion ratio obtained from all examined air temperatures for 
blanched samples were lower than those for non-treated 
ones. Th ere was also an increase in rehydration ratio with 
an increase in air temperature. When drying air temper-
ature changed from 50 to 70ºC, rehydration ratio values 
for non-treated and treated samples increased by 8.37 and 

11.15%, respectively. Similar results have been reported 
by Krokida and Marinos-Kouris (2003) for tomato and 
Prakash et al. (2003) for carrot.

Conclusions
Th e following conclusions are drawn from this study.
Drying curves were aff ected by the air temperature and 

pre-treatment. Increase in the air temperature caused a de-
crease in the drying time. Blanched tomato samples had a 
shorter drying time as compared to non-treated ones.

The effective diffusivity increased with increasing 
the air temperature and Deff  values for blanched samples 
are higher than those for non-treated samples under the 
same air temperatures. Th e activation energy values for 
non-treated and blanched samples were 23.73 and 17.55 
kJ mol-1, respectively.

Of all the four models, the logarithmic model gave an 
excellent fi t to experimental data obtained with a value for 
R2 greater than 0.9995.

Pre-treatment and air temperature had a signifi cant 
eff ect on the colour and rehydration ratio of dried sam-
ples. 
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Notation
a, b coeffi  cients in models 
+a colour redness coordinate
+b colour yellowness coordinate 
Deff  eff ective diff usivity, m2 s-1

D0 pre-exponential factor, m2 s-1

Ea activation energy, kJ mol-1

EMD mean relative percent deviation, %
ERMS root mean square error
H half-thickness of the slab in sample, m
k, k0  drying rate constants in models, h-1

L colour lightness coordinate 
m exponent in drying model
M moisture content at any time, kg [H2O] kg-1 [dry matter]
Me equilibrium moisture content, kg [H2O] kg-1 [dry matter]
M0 initial moisture content, kg [H2O] kg-1 [dry matter]
MR dimensionless moisture ratio 
MR, ex experimental dimensionless moisture ratio
MR, pre predicted dimensionless moisture ratio
n positive integer
N number of observations
R universal gas constant, kJ mol-1 K-1

R2 coeffi  cient of determination
t drying time, h
T absolute temperature, K
z number of constants
χ2 reduced chi-square
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