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Impact of Accounting for Polygenic Effects
on the Accuracy of Genomic Evaluations
in Livestock Breeding
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Summary

To investigate the accuracy of genomic breeding values, different scenarios were defined
by accounting for polygenic effects, a different number of quantitative trait loci (30, 90, 150),
and three levels of heritability (0.15, 0.25, and 0.4). The Bayes B method was used to estimate
marker effects. A historical population was simulated stochastically, which consisted of 100
animals at first 100 generations, then the population size gradually increased to 1000 animals
during the next 100 generations. The animals in generation 201 with known genotypic and
phenotypic records were assigned as the reference population, and animals of generation 202
were considered as the validation population. The genome was comprised of one chromosome
with 100 cM length and 500 markers that were distributed through the genome randomly.
Picking up the information that was not captured by linkage disequilibrium (LD), including
polygenic effects in the predictions increased the accuracy of genomic evaluations. As the
trait heritability went from 0.15 to 0.40, the average genomic accuracy increased from 0.48
to 0.64. An increment in the number of quantitative trait loci (NQTL) declined the accuracy of
the Bayes B method. This study suggests that the highest accuracy (0.74) was achieved when
additive genotypic effects were coded by a few quantitative trait loci and a lot of small effects
included in the prediction of genomic breeding values.

Key words

accuracy, genomic prediction, Bayes B method, number of quantitative trait loci, heritability

! Ministry of Agriculture- Jahad, Islamic Republic of Iran
? Department of Animal Science, Faculty of Agricultural Science, University of Guilan, Rasht, Islamic
Republic of Iran

P Corresponding author: abbas.atefi@gmail.com

Received: March 5, 2020 | Accepted: July 12, 2021

acs

Agric. conspec. sci. Vol. 86 (2021) No. 4 (357-360)



Introduction

Most of the economically important traits in livestock have
a complex architecture defined by a large number of genes and
affected by environmental factors. Statistical methods such as
BLUP combined phenotypes and pedigree information to estimate
the genetic merit (breeding values) of the selected candidates
under Fischer's infinitesimal model. According to this model,
phenotypes are expressed by an infinite number of loci, each with
an infinitesimal additive effect. In the last decades, due to advances
in molecular technologies and statistical methods, several
chromosomal regions that influence quantitative traits have been
detected. Moreover, the finite amount of DNA in the mammalian
genome suggests that there must be a finite number of loci that
control the expression of quantitative traits (between 20,000 and
35,000 genes) (Ewing and Green, 2000), in contrast with Fischer's
infinitesimal model. The genomic selection method first suggested
by Meuwissen et al. (2001) used dense marker information to
enhance the potential for improving the accuracy of genetic values
estimation. In genomic selection, genotypic information is used
to select elite individuals to produce the next generation. The
marker effects are estimated in a reference population, in which
the individuals have both known phenotypes and genotypes. The
estimated marker effects are used to estimate the genomic breeding
values of selection candidates. However, many different methods
were suggested to estimate the SNPs effects (Meuwissen et al.
2001, de los Campos et al. 2009, 2010, VanRaden, 2008, Gianola
et al. 2006). Many studies have shown that factors such as the size
of the reference data set (Meuwissen et al., 2001, VanRaden and
Sullivan, 2010), trait heritability, the number of loci affecting the
trait (Daetwyler et al., 2008), the degree of genetic relationships
between training and validation samples (Habier et al., 2007) and
the distributions of allele frequencies (Clark et al., 2011) affect
the accuracy of genomic evaluations (Hayes et al. 2010, De los
Campos et al. 2013). The standard genomic evaluation methods
utilize genetic markers information that is in LD with at least a
QTL. Accounting for polygenic effects in addition to marker
effects reduces the number of false-positive QTL by decreasing
fake associations. This approach may reduce prediction errors and
therefore enhance the accuracy of the genomic evaluations. These
advantages may be achieved due to better use of LD information
and also better trapping relationship information that is not
captured by LD. This study aimed to evaluate the accuracy of
genomic prediction with approaches that account for polygenic
effects, different numbers of QTLs, and three levels of heritability.

Materials and Methods

Simulation

Various scenarios were defined according to all combinations
of accounting for polygenic effects, three different levels of
heritability,and QTL numbers. Prediction accuracy, the correlation
between the predicted genomic breeding values and the true
values were estimated for each scenario. Parameter estimation was
performed via the Gibbs Sampler algorithm implemented in the
BGLR package of R software (Perez and De los Campos, 2014).

A historical population of 100 effective numbers with an equal
sex ratio was simulated using the QMSim software (Sargolzaei and
Schenkel, 2009), assuming three heritabilities of 0.15, 0.25, or 0.4.
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During the first 100 historical generations, random mating was
performed; then, to arrive at a mutation-drift balance, 100 more
generations were simulated in which the population size increased
to 1000 individuals gradually (the average number of progenies
per dam was equal to two). After the last historical generation,
the recent population was constructed by the random selection of
1000 individuals and two successive generations were generated
by random mating. The animals in generation 201 with known
genotypes and records for the trait constructed the training
population. The animals of generation 202 formed the validation
population which it was assumed there were no phenotypic
records.

The genome was comprised of one chromosome of 100 cM,
and 500 marker loci and QTL were randomly distributed on
the chromosome. All marker loci and QTL were bi-allelic with
equal initial allelic frequencies. The number of segregating QTL
affecting the trait was set at 30, 90, or 150. The Marker and
QTL allele frequencies were assumed to be equal in the 200*
generation. The mutation rate of the markers and QTLs were
assumed to be 2.5 x 107 per locus per generation. To calculate the
true breeding values, the additive effect of the QTLs was sampled
from the gamma distribution with a shape parameter of 0.4 and a
scale parameter of 1.66. The true breeding values were calculated
as below:

n=Norp

BV, = 3. 0,4,

j-1 (1]
where Qij is an incidence vector indicating QTL alleles at locus
j for animal i and q; is a vector of QTL alleles effects at locus j.
The phenotypic values were calculated as the sum of true breeding
values and errors that were sampled from a normal distribution
N(0, 6*).

The Bayes B model was used to estimate marker effects and to
account for polygenic effects, a modified Bayes B model, described
below, was used.

Model
Bayes B

The Bayes B method was first described in the study of
Meuwissen et al (2001). Bayes B is likely the most accepted model,
besides the lack of its formulation. Bayes B assumes a normal prior
distribution on the marker effects with zero mean and variance.
Then, a mixture of distributions is assumed on this variance that
is equal to zero with probability t and distributed as a chi-square
distribution with probability 1-m.

0°,,= 0 with probability 7,
0’ ~ X~ (df,s?) with probability (1-7).

In his formulation assuming a zero variance implies the absence
of uncertainty about the marker effect, and therefore the inference
lacks Bayesian sense. Furthermore, the selection of m is arbitrary
with no justification as well as the choice of the hyperparameters
in the inversed chi-square distribution that causes the flaws of
this method. However, Bayes B is one of the most used methods
and provides high accurate predictions, especially for those traits
coded by large effect genes as fat percentage.
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Modified Bayes B

The Bayes B model was extended to include a polygenic effect
(Solberg et al., 2009):

P
Y=u+a+2ngj +e

= (2]
where y is the vector of phenotypes, u is the overall mean, a is the
vector of polygenic effects, ¥ is the summation over all marker
loci from 1 to p, X. is a design matrix for the j" marker, g; is the
vector of the j™ marker effect and e is the residual term. The
variance of a was Var(a) = Ac’, where A (1000 x 1000) is the
additive relationship matrix, calculated based on five generations
of pedigree from generation 196 to 200 using the algorithm of
(Meuwissen and Luo,1992). Polygenic effects were sampled in the
MCMC chain using Gibbs sampling and assuming a prior N(0,
0’ ) following Sorenson and Gianola (2002), and 0® was estimated
using a scaled inverted chi-squared prior distribution with -2
degrees of freedom, which implies a non-informative flat prior
distribution (Sorenson and Gianola, 2002).

The elements of the X for each individual depend on the
number of alleles present in its genotype. For example, for i
individual having genotypes AA, Aa, or aa at j marker locus, the
X, element in X was assigned equal to 2, 1, or 0, respectively. In
this study, a Bayesian approach (Bayes B) was used to estimate
marker effects.

Results and Discussion

The accuracy of all scenarios was presented in Table 1.
Because of picking up the information that was not captured by
LD, including polygenic effects in the predictions increased the
accuracy of genomic evaluations. The highest improvement of
accuracy due to involving polygenic effects (0.07) occurred for the
trait with the highest heritability (h’=0.4) and the lowest number
of QTLs (N .. =30).

QTL

Table 1. Accuracy of genomic prediction with approaches that ac-
count for polygenic effects, different number of QTLs, and three lev-
els of heritability

Heritability Number of QTLs poly:;ir?i]cosftfects Witl;ffgi}tfsgenic
30 0.51 0.54
90 0.47 0.50 0.15
150 0.44 0.47
30 0.62 0.66
90 0.57 0.62 0.25
150 0.52 0.58
30 0.67 0.74
90 0.63 0.67 0.4
150 0.59 0.62

In a simulation study, Piyasatian and Dekkers (2013) showed
that when LD was low, the increment of the accuracy due to
the inclusion of polygenic effects was noticeable. They declared
that polygenic effects increased the LD signal and captured the
remaining relationship information that was not captured by SNPs,
depending on the extent of LD across chromosomes and training
population size. Accounting for polygenic effects in a genomic
model influenced the estimated variances by picking up the part
of the genetic variance that was not captured by the common
genomic model. A simulation study by Calus and Veerkamp (2007)
showed a slight increase in accuracy by including polygenic effects
on the genomic approach, but this depended on the extent of LD
between adjacent SNPs. Kapell et al. (2012) considered various
growth, behavioral and physiological traits in mice and showed
that involving polygenic effects had little effect on the prediction
ability of the genomic approach. Legarra et al. (2008) and De los
Campos et al. (2009) reported an increased prediction ability
using the genomic model relative to the polygenic model, but
little difference between a solely genomic model and a combined
genomic-polygenic model was found.

The accuracy of genomic evaluation improved from 0.48 to 0.64
as heritability increased from 0.15 to 0.40 (Fig. la). The positive
correlation between genomic evaluation accuracy and heritability
was reported in previous studies (Atefi et al, 2018, Wang et al. 2019,
Calus and Veerkamp 2007, Kolbehdari et al. 2007, Martinez et al.
2018). Since marker effects are estimated using the relationship
between phenotype and genotypic markers, estimation of marker
effects and therefore genomic breeding values (GEBVs) will be
more accurate for traits with high heritability.
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Figure 1. Accuracy of genomic evaluations for a) Different levels of
heritability, b) Different number of QTLs

In a simulation study, where three levels for heritability (0.5,
0.3, and 0.1) in combination with other population structures
and genetic architecture of the trait were investigated, the results
showed an increasing trend in the accuracy of GEBVs when
heritability of the trait increased (Atefi et al, 2018).

The amount of accuracy decreased as the number of QTLs
increased. The lowest accuracy (0.53) was achieved for Ny, =150
and the highest value (0.62) was for NQTL=30 (Fig. 1b).

In a simulation study, increasing the number of QTLs from
0.03 Me to 1 Me (Me is the number of independent chromosome
segments), decreased the accuracy of the Bayes B method from
0.739 to 0.344 (Daetwyler et al. 2008). However, different trends
were reported by researchers. For instance, Gorgani Firozjah et
al (2014) reported that the accuracy of all investigated scenarios
decreased by increasing the number of QTLs from 400 to 600.
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Different trends of genomic accuracy due to increasing the
number of QTLs may be related to the interaction between the
number of QTLs with other components of genetic architecture,
i.e., the interaction among QTLs alleles and interaction between
QTLs and non-genetic factors.

Bayesian methods define a prior density for SNPs in which a
high proportion of SNPs has a null effect (r), while other SNPs
have large or moderate effects. Therefore, Bayesian methods have
greater accuracy for the traits controlled by a few QTLs (Wang et
al. 2019).

This study suggests that the highest accuracy (0.74) was
achieved when trait variation was extremely specified by additive
genotypic effects, and additive genotypic effects were coded by a
few QTLs and a lot of small effects provided that all these small
effects were included in the estimation of GEBVs.

Conclusion

The accuracy of GEBVs was affected by three investigated
factors in this study i.e., trait heritability, number of QTLs, and
the inclusion of polygenic effects in the genomic evaluations. The
accuracy of the Bayes B method was increased as the heritability
increased. Conversely, the increment of the number of QTLs
decreased the accuracy of GEBV. Including polygenic effects in
the genomic evaluation improved the accuracy of GEBV due to
capturing information that could not be captured only by LD. The
highest accuracy (0.74) was obtained for the trait with the highest
heritability which its variance defined by the lowest number of
QTLs (30) and plenty of minor genes. The results of this study
emphasize that considering polygenic effects in addition to genetic
markers improved the accuracy of genomic breeding values by
exploiting relationship information that could not be captured by
LD.
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