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Summary

The anthropogenic emission of greenhouse gases including carbon dioxide, methane, and 
nitrous oxide is bringing about major changes to the global environment. Although most of 
the anthropogenic emissions originate from industrial processes, agriculture is responsible 
for a significant portion of the greenhouse gases produced by humans worldwide. The impact 
of agriculture has become a key issue, considering that the main greenhouse gases are those 
related to carbon and nitrogen global cycles. This paper presents a review of the scientific 
literature meant to provide the impact of human management through fertilizers use on CO2, 
CH4, and N2O emissions. The influence of organic and mineral fertilization on greenhouse 
gas emissions is analyzed, and usage of organic amendments showed a wise potential for 
protecting the environment and to mitigate greenhouse gas emissions.
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Introduction
Climate change is one of the greatest challenges that the 

world is facing today (Bilandzija et al., 2014). Changes in the 
concentration of greenhouse gases (GHG) in the atmosphere 
such as carbon dioxide (CO2), methane (CH4) and nitrous oxide 
(N2O) have been related to the increase in global temperature and 
are responsible for global warming by increasing the greenhouse 
effect (IPCC, 2007). By the end of the 21st Century, increases in 
global temperatures by 1.2°C to 4.8°C are predicted (IPCC, 2013). 
Although most of the anthropogenic emissions originate from the 
combustion of fossil fuels and industrial processes, CO2, CH4, and 
N2O emissions also come from soils and are related to agricultural 
activities (IPCC, 2007). This leads to the conclusion that due to its 
intensity, agricultural production is the cause of climate change 
(Znaor, 2009). As a part of the biosphere, agricultural soils can 
play as a sink but also as the source of GHGs which naturally 
depends on biotic and abiotic factors as well as on anthropogenic 
impact (agricultural soil management). The primary process 
that is responsible for emissions releasing from the soil into the 
atmosphere is diffusion (Buchmann, 2000) that is affected by plant 
roots (Raich and Tufekgcioglu, 2000), respiration of organisms in 
the soil, and soil organic matter decomposition (Norman et al., 
1992; Xu and Qi, 2001; Epron et al., 2006). Furthermore, studies 
have shown that factors such as soil temperature, soil moisture, 
climatic factors, tillage systems, fertilization practices, crop 
presence and density, presence of organic matter and nutrients 
influence the GHG production and emission rates from the soil 
surface (Ludwig et al., 2001; Skiba and Ball, 2002; Lal, 2003; Ball, 
2013; Bilandzija et al., 2014).

Moreover, fertilizer induced GHG emissions represent the 
largest source of total agricultural emissions (Wang et al., 2017). 
For example, in the UK, 75% of the total emissions from crop 
production result from the use of organic and inorganic nitrogen 
fertilizers (Hillier et al., 2009). Therefore, this paper presents the 
state of agricultural soil and GHG and the influence of human 
management through fertilizers use on CO2, CH4, and N2O 
emissions.

Relationship between soil properties and GHG flux

According to Ball et al. (2013), soil properties have a major 
effect on the emission and exchange of GHGs. The effect of 
physical-mechanical, chemical or biological properties on soil 
GHGs is very complex, as it is determined by various factors 
(Buragienė et al., 2019). These effects came through soil moisture, 
penetration resistance, soil temperature, structure, porosity, 
soil organic matter, soil mineralogy, pH and soil nitrogen 
(Beauchamp, 1997; Evans and Burke, 2013). Soil temperature, 
soil moisture, mineral N content, soil organic matter content, 
and pH can directly affect GHGs from the soil surface through 
microbial activity (Ball, 2013; Bilandzija et al., 2014; Oertel et al., 
2016). Increases of soil temperature leads to higher CO2 emissions 
(Ludwig et al., 2001; Tang et al., 2003; Galic et al., 2019), N2O 
emissions (Liu et al., 2011) and CH4 emissions (Rosenkranz et 
al., 2006; Butterbach-Bahl et al., 2013). Soil moisture influences 
gas diffusion and microbial activity (Lou et al., 2003). In dry 
soil activity of microorganisms decreases which also affects soil 
respiration (Galic et al., 2019). According to Brady and Weil 
(2010), soil organic matter occupies the largest part of carbon 

stocks in agroecosystems and plays a very important role in the 
global balance of carbon and nitrogen cycles where C:N represents 
an important criterion for evaluating the quality of humus (Kisic 
et al., 2017), and it also directly affects the GHG emissions from 
the soil. High soil N concentrations, especially those following 
fertilization, may induce microbe-mediated N transformation 
processes leading to high N2O emissions (Bouwman et al., 2002). 
The optimal C:N in the soil is 10:1 while in terms of compost, 
the ideal C:N is 30 and it indicates a sufficient amount of food 
available to micro-organisms (Kisic et al., 2017). Globally viewed, 
the soil is the central link in the organic biotransformation chain. 
As the most important "organ of the agricultural organism" the soil 
transforms all organic residues through decompositors (Zgorelec 
et al., 2017). Every transformation of organic matter ends with the 
emissions into the environment. Several studies reported that N2O 
and CO2 fluxes increased more after the application of residues 
with low C:N compared to high C:N (Aulakh et al., 1991; Huang et 
al., 2004; Jiang et al., 2011). Soil pH is important for mineral decay, 
the intensity of microbiological processes, OM mineralization, 
the solubility of substances and other physicochemical processes 
occurring in soil (Mažvila et al., 1998).

Although the processes of GHG production and emission 
are considered as mainly biological, soil physical conditions also 
play a significant role (Gregorich et al., 2006). Thus, soil structure 
changes can influence its source and sink function (Jungkunst 
and Fiedler, 2007) while texture and drainage influence emissions 
indirectly by their influence on the above-mentioned properties 
(Skiba and Ball, 2002).

Agricultural sector in Europe 

Although climate changes and their consequences affect 
humans, they also affect soil possibility to provide its Ecosystem 
services in the future (Galic et al., 2019a). Therefore, agriculture 
represents an important contributor to climate change through 
emissions of GHGs and air pollutants. Agricultural land accounts 
for 40 % of total EU land that represents one of the world's leading 
producers and exporters of agricultural products. Considering that 
agriculture is also a driver of climate change itself, Europe needs 
to adapt its agricultural food system and reduce its emissions from 
agriculture (EEA, 2019). The GHG contribution varies by country 
(Table 1), but, just less than 44 % of the total agricultural emissions 
of the 28 EU Member States are released from France, Germany, 
and the United Kingdom. Between 1990 and 2016, decreases by 
20 % in GHG emissions from the agriculture sector are recorded 
(EEA, 2018).

In the Republic of Croatia, GHG emissions in the Agricultural 
sector are conditioned by different agricultural activities. As 
a signatory of the UNFCCC Convention, Croatia has the 
obligation to write a National Inventory Report (NIR) using 
the Intergovernmental Panel on Climate Change (IPCC) and 
Land Use, Land Use Change and Forestry (LULUCF) guidelines. 
According to the Kyoto Protocol, the EU has taken a leading role 
in tackling climate change and set the goal of reducing GHG 
emissions by 80 % by 2050 where the Republic of Croatia shows 
the possibility to achieve the European goal of reducing GHGs 
(NIR, 2017). Table 1 presents average greenhouse gas emissions 
(Kt CO2 eq) from the agricultural sector calculated from 1990 – 
2017 per EU and non-EU countries (FAO, 2019). 
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Table 1. Average greenhouse gas emissions (Kt CO2 eq) by country 
(1990 – 2017), Agriculture total + (Total)

Country Kt CO2 eq

Austria 7392.4

Bulgaria 5520.6

Bosnia and Herzegovina 2222.9

Croatia 2909.6

France 73735.2

Germany 62772.9

Italy 32529.7

Montenegro 398.3

Netherlands 18478.9

Poland 31871.8

Romania 16439.2

Serbia 6536.6

Slovenia 1607.7

Influence of organic and mineral fertilization on GHG 
emissions

Despite the influence of physical-mechanical, chemical or 
biological properties on GHG production, soil management 
practices affect factors previously described and benefit microbial 
activity. Among them, the application of mineral or organic 
fertilizers is of great importance for CO2, CH4 and N2O emissions 
which can also be altered by changes in the amount and chemical 
compositions of manure applied to soils (Rahman et al., 2016). 

Soil management systems that add organic wastes and 
incorporate carbon have been evaluated as important alternatives 
for increasing the capacity of atmospheric carbon sinks (Tian et 
al., 2009). The use of organic amendments including manures, 
composts, crop residues, and biosolids is rapidly increasing, and 
their share of agricultural land continues to grow (Thangarajan 
et al., 2013). Organic amendments improve the quality of the soil 
(Shrestha et al., 2013) through chemical, physical and biological 
activity (Fereidooni et al., 2013). Organic wastes are usually rich 
in carbon and nitrogen, and their addition increases the soil 
content of labile carbon and nitrification and denitrification rates 
(Jones et al., 2005). However, sustainable application of wastes 
in agriculture should not only refer to the balanced supply of 
the necessary nutrients, but also to the minimization of negative 
environmental impact (Cayuela et al., 2010). 

Usage of mineral fertilizers is implemented in order to 
balance the gap between the nutrients required for optimal 
crop development and the nutrients supplied by the soil and 
by available organic sources. On the other hand, the fertilizer 
industry is a consumer of energy and a GHG emitter. Considering 
that sustainability of agricultural systems in many parts of the 
world is threatened by the rapid increase in world population, 
intensification without suitable management and the use of 
agrochemicals, including chemical fertilizers has negative 

implications for the ecosystem and environment (Abbasi and 
Khizar, 2012), decreases organic matter (Belay et al., 2002; Nardi 
et al., 2004; Wu et al., 2004), decreases soil fertility and increases 
environmental degradation (Tiwari et al., 2008). However, 
anthropogenic influence on the soil is the factor over which we 
have the greatest control. By implementing good agricultural 
practices, which are based on principles of sustainable agriculture, 
it is possible to reduce GHGs into the atmosphere.

Carbon dioxide emissions (CO2)

Increased levels of atmospheric CO2 have prompted research 
assessing the contributions of industrial, agricultural and 
environmental practices (Al-Kaisi et al., 2008). Accordingly, CO2 
is recognized as the largest contributor to the greenhouse effect. 
Since 1750, approximately 35 % of anthropogenic CO2 emissions 
have been directly related to changes in land use (Foley et al., 
2005). Certain measures, such as the use of different fertilizers can 
be taken to enhance the capacity of lands to sequester atmospheric 
C (Janzen et al., 1998; Nadelhoffer et al., 1999; Bowden et al., 2004). 
Instead of burning crop residues, the applications of inorganic 
fertilizers and the use of green manures, as well as organic manures 
can be of great importance in maintaining soil fertility (Ladd et al., 
1994). These practices can provide essential nutrients to crops and 
reductions in the burning of crops can reduce CO2 emissions into 
the atmosphere (Edmeades, 2003). 

Organic fertilization

Soil CO2 emissions are a result of a combination of 
heterotrophic and autotrophic respiration, and both can be 
stimulated by the addition of organic compost (Ryals and Silver, 
2013). Increases in soil CO2 fluxes in agricultural soils after the 
disposals of organic wastes have been frequently observed by 
several authors (Scott et al., 2000; Cai et al., 2012; Ryals and 
Silver, 2013). Accordingly, Cayuela et al. (2010) reported on CO2 
emissions from six animal-derived wastes (horn and hoof meal, 
blood meal, hydrolyzed leather, meat bone meal, chicken manure, 
and a commercial organic mixed fertilizer) and found that soils 
treated with various animal by-products increased CO2 emission 
(the maximum CO2 fluxes were observed for the organic fertilizer 
mixture in the sandy soil - 0.031 g CO2-C kg−1 soil and for chicken 
manure in the loam soil - 0.189 g CO2-C kg−1 soil). Heintze et al. 
(2017) incorporated biogas digestate and cattle slurry to simulate 
the high-risk situation of enhanced GHG following organic 
fertilizer application in energy maize cultivation. The application 
of cattle slurry resulted in significantly higher CO2 (141.54 mg C 
m‒2 h‒1) compared to the application of biogas digestate (89.95 mg 
C m‒2 h‒1).

Many researchers showed that replacing chemical fertilizer 
with organic manure significantly decreased the emission of 
GHGs and pointed out that organic farming can reverse the 
agriculture ecosystem from a carbon source to a carbon sink (Liu 
et al., 2014). The substitution of chemical fertilizers with organic 
fertilizers has become a common practice in agricultural systems. 
Thus, mitigating GHG emissions through the replacement of 
chemical fertilizer with organic manure in temperate farmland 
was investigated by Liu et al. (2014). Results showed that replacing 
chemical fertilizer with organic manure significantly decreased 
GHG emissions without crop yield losses which reversed the 
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agriculture ecosystem from a carbon source (+2.7 t CO2-eq. hm-2 
y-1) to a carbon sink (-8.8 t CO2-eq. hm-2 y-1). Ren et al. (2017) 
combined data from 379 observations in China and quantified 
the responses of soil N2O, CO2 and CH4 emissions to manure 
(Org-M) in comparison to chemical fertilizers (Min-F) or non-
fertilizers (Non-F). The results showed that N2O, CO2, and CH4 
emissions were significantly affected by Org-M compared to 
Min-F (percentage change: −3, +15 and +60 %) and Non-F 
(percentage change: +289, +84 and +83 %). Increases in soil CO2 
fluxes in agricultural soils after the organic waste application are 
also observed by several authors (Scott et al., 2000; Chantigny 
et al., 2001; Bertora et al., 2008; Johansen et al., 2013; Ryals and 
Silver, 2013; Galic et al., 2019a).

Mineral fertilization

Using the IPCC methodology, synthetic N fertilizers used in 
the production of a cereal crop contributed the highest percentage 
of the carbon footprint, averaging 65 % of the total emissions 
(IPCC, 2006; Gan et al., 2011). Increases in available N can occur 
through human-induced N additions or change of land-use and/
or management practices that mineralize soil organic N (IPCC, 
2006). The application of N fertilizer and urea has been shown to 
influence most biological processes in the soil that are important 
to mineralization, carbon sequestration and nutrient cycling 
(Bastida et al., 2006; Yan et al., 2007).

Zhang et al. (2014a) identified the characteristics of soil 
CO2 emission and carbon balance in cropland ecosystems after 
continuous fertilizer applications (no-fertilizer application (SR), 
nitrogen – phosphorus – potassium chemical fertilizers (NPK), 
NPK plus pig manure (NPKM) and pig manure alone (M). 
Authors found that the cumulative CO2 emission from upland 
soils in a cropland ecosystem treated with an inorganic fertilizer 
was higher (8.2 and 11.0 t C ha-1 in 2009, and 7.9 and 11.1 t C ha-1 
in 2010) than that emitted from soils without fertilizer (2.5 and 
3.4 t C ha-1 in 2009, and 2.1 and 3.7 t C ha-1 in 2010), but lower 
than that emitted from soils treated with organic fertilizer or with 
organic and inorganic fertilizers. Furthermore, several authors 
concluded that increasing the amount of mineral N fertilization 
such as ammonium nitrate can cause a decrease in soil CO2 
emissions in agricultural soils (Kowalenko et al., 1978; Wilson 
and Al-Kaisi, 2008). Mignon et al. (2011) studied the effects of 
mineral and organic fertilization on CO2 emission in a potato field 
including three treatments (control without fertilization, mineral 
fertilizer (100 kg N of N15P15K15 complex) and organic fertilizer 
(100 kg N from manure)). Obtained results indicated a higher 
soil respiration rate in organically fertilized soil (an increase from 
153 – 485 %) while in mineral fertilized soil (an increase of 40%) 
like in control treatments (increase up to 115%) the values of soil 
respiration were lower. Gregorich and Rochette (1998) studied the 
effects of three-year application of N fertilizer (200 kg N ha–1) and 
different manure amendments (stockpiled or rotted manure) on 
CO2 evolution and reported no significant differences between 
CO2 emissions from soil cultivated with maize and mineral 
fertilized soil compared to unfertilized soil.

Nitrous oxide emissions (N2O)

Despite the fact that CH4 and N2O are present in the 
atmosphere at much lower concentrations than CO2, these gases 

potentially cause much more significant greenhouse effects 
(Forster et al., 2007). According to Desjardins and Riznek (2000), 
45% of agricultural N2O emission in Canada originates from the 
collection, storage, and application of animal manure. 

To observe the effects of organic manures and crop residues 
amendments, Baruah and Baruah (2015) used five fertilizer 
treatments (NPK, cow manure, rice straw, poultry manure, and 
sugarcane bagasse) and concluded that rice straw, poultry manure, 
and sugarcane bagasse decreased the cumulative N2O emissions 
by 14% and 31%, by 1%, and 7%, and 5% and 3%, respectively, 
in 2012 and 2013 when compared to conventional fertilizer 
treatment (NPK) in both seasons. Few studies are reporting 
direct comparison in N2O emissions between liquid and solid 
manures. Gregorich et al. (2005) noted that GHG emissions from 
liquid manure applications differ in emissions from solid manure 
applications. Solid manure applications resulted in substantially 
lower N2O emission (0.99 kg N2O-N ha-1 y-1) than liquid manure 
(2.83 kg N2O-N ha-1 y-1). However, Mogge et al. (1999) reported 
higher emissions from the soil with a 30 years’ history of repeated 
application of solid (5.3 kg N2O-N ha-1 y-1) compared to liquid 
manure (2.1 kg N2O-N ha-1 y-1) and concluded that nitrification 
was the major contributor to N2O production. Flessa et al. (1995) 
calculated nitrous oxide emissions of 9.4 kg N2O-N ha-1 y-1 from soil 
fertilized with farmyard manure and 50 kg N (calcium ammonium 
nitrate). Rochette et al. (2008) compared N2O emissions following 
the application of liquid and solid dairy cattle manures and found 
that there was no clear difference in N2O emissions between liquid 
and solid manures. 

It is generally acknowledged that the nitrogen fertilization 
leads to an increase in N2O emissions from agricultural soils 
through an increase in available N because of nitrification and 
denitrification enhancement (Hofstra and Bouwman, 2005; IPCC, 
2006). Accordingly, Dong et al. (2009) investigated the effect of 
long-term fertilization (no fertilizer, NK, NP, PK, and NPK) on 
N2O fluxes. N2O flux was significantly higher in treatments with N 
fertilizer compared to no fertilizer and PK treatments and showed 
great N fertilization effect on N2O flux. Changes in N2O emissions 
from soil depending on mineral fertilizer quantity and application 
mode were investigated by Allen et al. (2010). A general trend 
of increasing N2O emissions with fertilizer N application was 
observed (maximum in 200 N cane-row - 21.2 mg N2O m−2 h−1 
while minimum in 0 N between-row positions - 0.01 mg N2O m−2 
h−1) as well as a cognition that application mode of fertilizer affects 
N2O emissions. Zhang et al. (2014) measured N2O emissions 
from a maize-wheat field in China investigated for four years. 
The annual N2O fluxes ranged for the control treatment (without 
fertilization) between 1.3 – 2.7 kg N ha−1 y−1 to 4.0 – 12.5 kg N ha−1 
y−1 on fertilization plots. The authors showed that the addition 
of fertilizers increased N2O emissions and proved the relation 
between emission values and soil precipitation and humidity. 
Clayton at al. (1997) conducted an experiment on a clay loam 
including plots fertilized with ammonium sulphate, urea, calcium 
nitrate, ammonium nitrate, and cattle slurry supplemented with 
ammonium nitrate. The total emissions from urea were five to 
six-fold greater (0.8 – 1.4 g N2O-N ha–1) than from ammonium 
sulphate, which caused the lowest emissions (0.2 – 0.4 g N2O-N 
ha–1). 
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Methane emissions (CH4)

If soil is a net source or sink for methane, it depends on the 
relative rates of methanogenic and methanotrophic activity 
(Schimel, 2000; Bodelier and Laanbroek, 2004) where methane-
oxidizing microorganisms play an important role in limiting 
methane emissions from soils (Topp and Patey, 1997). According 
to Cai et al. (2007), the CH4 exchange between croplands and 
the atmosphere is influenced by N fertilizer application, which 
has varying effects on CH4 emissions (Sun et al., 2016). In some 
cases, CH4 emissions are stimulated (Shang et al., 2011), inhibited 
(Venterea et al., 2005) or have no significant effects (Mosier et al., 
2006). Besides crop growth stimulation, N fertilizers provide more 
carbon substrates to methanogens for CH4 production (Inubushi 
et al., 2003).

Accordingly, a 3‐year field experiment was conducted by 
Zou et al. (2005) to simultaneously measure CH4 emissions from 
rice paddies under various agricultural management including 
water regime, crop residue incorporation and synthetic fertilizer 
application (urea - 150, 300, 450 kg N / ha x season). Results 
showed that CH4 emissions appeared to decrease with increased 
urea fertilization (150, 300 and 450 kg N ha-1 were 17.3, 7.3 and 
4.2 CH4-C g m-2), which is consistent with the results in some 
other rice paddies (Krüger and Frenzel, 2003). Lindau et al. 
(1991), however, found that CH4 emission increased with urea 
application (maximum CH₄ emissions from the 0, 100, 200 and 
300 urea-N treatments were 6.0, 8.9, 9.8 and 11.2 kg CH₄ ha-1 
d-1, respectively) while Wang et al. (1993) reported no change in 
emission with urea application and a decrease in CH4 production 
with ammonium nitrate. 

The effect of ammonium thiosulphate on the production 
and emission of CH4 from rice soil in India was investigated 
by Rath et al. (2002). Results suggest the mitigation potential 
of ammonium thiosulphate on CH4 emission from flooded 
rice paddies without having a significant reduction in yield. In 
ammonium thiosulphate-applied rice field plots, mean methane 
efflux decreased by approximately 38 and 60 % at 45.6 and 60 kg 
N ha−1, respectively, compared to control. Lu et al. (1999) reported 
a significant reduction of CH4 emission from the soil with the 
application of phosphorus fertilizer where mean emission rates in 
treatment without P were 19–33 % higher than in those with P 
fertilization. The use of ammonium sulphate could reduce CH4 
emission by 10–67 % (Wassmann et al., 2000).

Except for the fact that organic fertilizers application enhances 
soil nutrient availability, microbial activity and biodiversity 
(Jannoura et al., 2014), the increased availability of carbon after 
application of organic fertilizer increases CH4 emissions (Chen et 
al., 2014; Pramanik and Kim, 2014; Zhou et al., 2016). In addition, 
cow manure as a source of organic material is also able to increase 
the production of methane (Kongchum, 2005). In the research 
of Nungkat et al. (2015), cow manure did not significantly affect 
the total methane flux during the first season. Traore et al. (2017) 
measured the effects of different fertilizers on methane emission 
including green manure, animal manure, and biogas residue. 
Methanogenic activities in soils treated with organic manure were 
higher than those with chemical fertilizers. Among the organic 
manure fields, the maximum methane emission was from green 
manure. Conversely, Sampanpanish (2011) studied an effect of 
organic fertilizers on methane emission in off-season rice farming 

and reported that the application of 6.25 t ha-1 of manure on rice 
paddies resulted in lower greenhouse gas emissions than the use 
of chemical fertilizers. 

Conclusion
This paper presents a review of the scientific literature meant 

to provide information on the influence of human management 
through fertilizers use on CO2, CH4, and N2O emissions. Nowadays, 
the application of fertilizers is inevitable. Considering the global 
energy demands and increasing cost of inorganic fertilizers, use 
of organic amendments might be a wise choice for decreasing 
the intensive use of synthetic fertilizers, protecting environments 
and to mitigate GHG emissions. Higher soil's organic content will 
also improve the soil's ability to retain water and nutrients and 
resist pests and droughts. Intelligent usage of organic manure and 
inorganic fertilizers is essential to augment productivity, input use 
efficiency and safeguard soil health. 
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