
163

Agriculturae Conspectus Scientifi cus . Vol. 82 (2017) No. 2 (163-166)

ORIGINAL SCIENTIFIC PAPER

Summary

Lameness in dairy cows is a concern for both producers and consumers. Milk mid-
infrared (MIR) analysis could be an extra tool in the detection of lameness problems 
for farmers. Th e aim of this study was to test the feasibility of detecting lameness 
problems using MIR spectra from milk through the development of predictive 
models. Th e data for this research was provided by RINDERZUCHT AUSTRIA 
(2017), from their “Effi  cient Cow” project and were recorded between July 2014 and 
December 2014. Th e data sets used were the complete data set of 9811 records and 
subsets according to lactation stage, parity, breed and hoof disease. Two types of pre-
processing were tried: fi rst derivative followed by a Standard Normal Variate (SNV) 
transformation or second derivative followed by a SNV transformation. Th e fi rst and 
second derivatives do not give the same results which highlights the importance of 
pre-processing during model development. Th e best results were obtained for the 
Heel horn erosion subset. However, the specifi c nature of the used data requires the 
addition of more data coming from varied animals and farms and validation steps 
before using this technology on a larger scale.
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Introduction
Lameness in dairy cows is a concern for both producers and 

consumers. Indeed, it is the third most costly health problem 
on dairy farms (Enting et al., 1997) with a mean prevalence of 
36.9% reaching up to 79.2 % on certain farms (e.g. Barker et al. 
2010). It is also a big animal welfare concern and generates the 
need to use antibiotics. Milk mid-infrared (MIR) analysis could 
be an extra tool in the detection of lameness problems for farm-
ers without adding to their workload. Indeed, the MIR analysis 
is already performed in routine for most of the cows to provide 
at least fat and protein content in the frame of the milk record-
ing. Th e idea is that lameness associated physiological, e.g. in-
fl ammation, or behavioural, e.g. feeding habits, changes have a 
repercussion on the milk composition and that this change can 
be detected through the use of MIR spectra. Th is could be espe-
cially useful for early lameness detection, i.e. animals are already 
aff ected before showing clear clinical signs and are potentially 
more easily overlooked, or for large herds where it is harder to 
keep track of all animals with the same level of detail on a reg-
ular basis. Th e objective of this study was to test the feasibility 
of detecting lameness problems using MIR spectra from milk 
through development of predictive models and to evaluate the 
eff ect of diff erent pre-treatment methods on the sensitivity and 
specifi city of the prediction models.

Data collection, sub setting and calibration
Th e data for this research was provided by RINDERZUCHT 

AUSTRIA (2017), from their “Effi  cient Cow” project. Th is pro-
ject, launched in 2012, collected data from 167 Austrian farms 
and about 5000 dairy cows. Among the data collected, there was 
information on animal health such as lameness and claw care. 
Lameness was assessed by trained technicians, using Visual 
Locomotion Scoring which gives a cow a score from 1 to 5. 
Diseases or problems of the foot or hoof were recorded by hoof 
trimmers. Th e Visual Locomotion Scoring according to Sprecher 
et al. (1997) gave the animals a score of 1 (normal gait), 2 (uneven 
or stiff  gait), 3 (lightly lame), 4 (lame) or 5 (heavily lame). For the 
present analysis, a new variable was created out of these scores, 
classifying animals into non lame (1 and 2) and lame (3, 4 and 
5). Next to this, milk samples gathered for routine milk record-
ing were analyzed by MIR spectrometry using 1 FOSS FT+ and 
2 FOSS FT6000 instruments. Th e MIR instruments were stand-
ardized using the EMR/CRA-W standardization process (Grelet 
et al., 2015). Only records between calving and 365 days in milk, 
and with a maximum of 7 days between the lameness scoring and 
the milk sampling for MIR analysis were used in this study. Th ey 
were recorded between July 2014, start of the standardization of 
the spectrometers in Austria, and December 2014 on 3973 cows 
from 121 farms, giving a total of 9811 records. Cows were record-
ed on average 2.5 times. Th e cows consisted of 2670 Fleckvieh, 
666 Holstein and 637 Brown Swiss cows. MIR spectra consist of 
1060 absorbance values at diff erent wavenumbers, ranging from 
925.66 cm-1 to 5010.16 cm-1. Th e absorbance values give informa-
tion about the composition of the milk as each combination of 
atoms absorbs light at a precise wavenumber. Yet, not all those 
1060 data points are used in the making of the prediction model. 
Indeed, some parts of the spectra are ‘noisy’ because of strong 

water absorption. Th erefore, specifi c parts, that contain the most 
information whilst also reducing the noise to a minimum, are 
selected. Th ese spectral areas are: 968.1 to 1577.5 cm-1, 1731.8 
to 1762.6 cm-1, 1781.9 to 1808.9 cm-1 and 2831.0 to 2966.0 cm-1 
(Grelet, 2016). It is also important to note that lameness predic-
tion is indirect as it is not directly measured in milk but based 
on modifi cations in milk composition; therefore, the selected 
parts of the spectrum are used as a whole to predict lameness 
directly. Lameness and MIR data were merged and inadequate 
records, containing only lameness or only MIR information or 
with more than seven days between Locomotion Scoring and 
milk sampling, were deleted using SAS (SAS Institute Inc., 2017). 
Diff erent data sets were created. Th e full set (9811 records) was 
used as a reference. Multiple subsets, either linked to a specifi c 
period in the lactation, to specifi c diseases, to breed or to parity, 
were created to obtain more homogeneous data sets. Th is was 
done to see if homogeneity of the dependent variable defi nition 
and the associated spectra had an infl uence on the precision of 
the model. Subsets with diff erent groupings of animals were 
created with only heifers (parity=1), young (parity=1, 2) and 
old (parity>2) cows. Th is was done as there is not a consensus 
on the infl uence of parity on milk composition in the literature. 
Some studies report this infl uence (e.g., Yadav et al.,2013; Yang 
et al.,2013) others not (e.g., Gurmessa et al. 2012). Subsets were 
also created for lactation stages; a factor that is known to infl u-
ence milk composition (e.g., Bastin 2011). For this, the complete 
lactation was split into fi rst and last half and fi rst and last third. 
In order to allow diff erences due to health and lameness having 
a better chance of standing out, we also took breed into account 
to smooth out breed related  diff erences. Indeed, many studies 
(e.g., Heinrichs et al., 1997) reported the infl uence of breed on 
milk composition. Heel horn erosion (HHE) is the dissolution 
and decay of the horn on the bulbs of the heel. White line dis-
ease (WL) refers to a gap between the sole and the wall oft en 
fi lled with feces or decayed horn masses, which can lead to an 
abscess if the leather skin is aff ected (Egger-Danner et al. 2015). 
For both these diseases, specifi c sets were created by selecting 
all records with the disease, adding all the records of healthy 
animals coming from the same farms and only keeping records 
were the hoof trimmer data had been collected within three 
weeks of the MIR analysis. However, not all animals aff ected 
by HHE or WL were also lame so two extra fi les were created 
where only diseased lame and healthy non lame animals were 
kept. A third of the records of every data set were randomly se-
lected for validation. Th e other two thirds of each subset were 
selected and used for calibration. For this separation of calibra-
tion and validation, the data sets were separated by record, not 
by animal, even though some animals have multiple records, 
because the lameness status of an animal can vary over time 
and the animal may fi nd itself in diff erent living conditions, e.g. 
pasture in summer and stall in winter. Th is makes every record 
unique. In the case of heel horn erosion (HHE) and wall defect 
(WL), some MIR spectra found themselves in both data sets as 
the cow had one of her hoofs aff ected by heel horn erosion, while 
another had a wall defect problem. In total, from the 9811 re-
cords, 1843 had HHE and 1068 suff ered from WL disease. Pre-
treatment of the spectra consisted of a fi rst or second derivative 
with widths of 5, using the Savitzky-Golay method, to enhance 
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resolution and eliminate additive baseline drift  between sam-
ples. Th is was followed by a transformation to Standard Normal 
Variates (SNV) in irder to standardize each spectrum into having 
a mean of 0 and standard deviation of 1 to correct for scattering 
(Fearn, 2017; Huang et al., 2010). Venetian blinds were chosen 
as cross-validation, which means 10% of the calibration set was 
randomly selected 10 times. Prediction models were done with 
Partial Least Squares Discriminant Analysis (PLS-DA), using the 
soft ware PLS-Toolbox, by Eigenvector Research Inc., on Matlab 
(Th e MathWorks Inc., 2000). Th e PLS-DA is a variant of PLS re-
gression used when the dependent variable is categorical, in this 
case lame vs. non lame (Fernández Pierna, 2017). 

Results and discussion 
Th e results for diff erent data sets are shown in Table 1. Th e 

sensitivity, i.e. lame animals predicted as lame by the model, and 
the specifi city, i.e. non lame animals predicted as non lame, is 
presented for each data set for calibration and validation (Penn 
State Eberly College of Science, 2017). Th e number of latent var-
iables used in the prediction models was chosen based on the 
break of slope of the Root-Mean-Square Error of Cross-Validation 
(RMSEcv) plot of the data set ‘All’. RMSEcv is a measure of fi t 
and the smaller this value, the better the prediction model. Th e 
break of slope is the point where adding another latent variable 

does not signifi cantly reduce the RMSEcv anymore. Because 
all other data sets were then compared to the former, the same 
number of 11 latent variables was chosen for every set. For each 
data set, the fi rst row is the results obtained for using the fi rst 
derivative, the second row for the second derivative. 

As shown in Table 1, changing the pre-processing from a fi rst 
derivative and SNV to a second derivative and SNV produces 
varying results, depending on the subsets. Based on these results 
that refl ect results found by Soyeurt et al. (2011), when working 
on models with MIR spectra, it is important to test pre-treat-
ment possibilities to make the most advised choice. Th e result 
for the complete number of records, ‘All’, is low to average with 
sensitivities and specifi cities between 53.64 and 64.51 for the 
fi rst derivative and the second derivative.

Results showed that sensitivity and specifi city strongly in-
creased for smaller subsets with more precise defi nition of the 
target to be predicted. In this study we choose to reduce the 
variation due to known factors by making data sets smaller and 
therefore also reducing the variation in the spectra. Th is allowed 
obtaining better results. However, selecting very strictly on cer-
tain factors can also become a problem if the data sets become 
too small for good calibration as illustrated in the second to last 
set. An alternative way of dealing with this issue could be by 

Subset  N   Lame  Pre-treatment Calibration Validation 
    Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) 
All 9811 795 1st der 63.30 62.88 59.77 62.45 
   2nd der 61.05 65.42 53.64 64.51 
First half of lactation 5509 490 1st der 59.94 68.28 53.37 65.80 
   2nd der 59.29 69.24 52.24 67.37 
Last half of lactation 4302 305 1st der 67.98 64.13 59.80 63.59 
   2nd der 61.08 67.66 55.88 66.97 
First third of lactation 3806 348 1st der 70.29 54.61 66.97 57.67 
   2nd der 68.20 60.05 62.39 60.60 
Last third of lactation 2479 176 1st der 64.87 68.74 44.62 66.36 
      2nd der 56.76 72.50 32.31 68.07 
Fleckvieh 6828 578 1st der 71.13 62.03 61.58 58.87 
   2nd der 67.78 65.56 54.74 61.03 
Holstein 1560 121 1st der 67.53 70.41 43.18 71.01 
   2nd der 54.55 77.47 43.18 78.57 
Brown Swiss 1423 96 1st der 68.12 70.00 66.67 63.31 
      2nd der 69.57 72.73 59.26 67.79 
Heifer (parity = 1) 2792 96 1st der 73.44 67.00 56.25 64.74 
   2nd der 64.06 71.56 46.88 69.63 
Young (parity = 1,2) 4855 195 1st der 71.43 59.34 48.89 57.78 
   2nd der 63.91 63.21 46.77 61.63 
Old (parity > 2) 4956 600 1st der 67.85 59.99 60.00 61.37 
      2nd der 68.35 61.91 60.49 62.41 
HHE* 596 52 1st der 87.50 93.43 85.00 91.06 
   2nd der 84.38 93.43 80.00 91.62 
HHE* & lame 273 52 1st der 87.18 92.31 84.62 85.90 
   2nd der 87.18 90.91 84.62 88.46 
WL** 678 41 1st der 58.62 90.54 41.67 88.32 
   2nd der 44.83 92.91 25.00 90.65 
WL** & lame 465 41 1st der 80.77 89.09 53.33 83.57 
      2nd der 80.77 89.44 53.33 84.29 

Table 1. Number of records (N), number of lame records (lame), sensitivity and specifi city for calibration, validation and for fi rst 
derivative (1st der) or second derivative (2nd der) for diff erent data sets. *HHE = Heelhorn erosion, **WL = white line defect.
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keeping larger data sets but adding factors that take into account 
additional sources of variation during the process of modelling 
Th is approach was recently successfully used to link methane to 
MIR data taking into account lactation stage (Vanlierde et al., 
2015). Increasing the number of true positives (i.e. sensitivity) 
is rather critical as for the farmer it is more important to detect 
lame animals to treat them. However, in most cases, this per-
centage is still too low because missing to predict 30 to 40% of 
cows who need help is very ineffi  cient. Furthermore, by chance, 
we have a 50% chance of classing an animal correctly in the lame 
or non lame categories as there are only two options. Th erefore, 
predicting 60 or even 70% correctly due to the model seems to 
be only a small improvement compared to chance. Th ese fi rst re-
sults showed that the MIR technology potentially has to be used 
for very specifi c situations and that not all types of lameness can 
be predicted. Moreover, the diff erent sources of variation need 
to be better controlled before the technology can be used on a 
larger scale with data coming from varied animals and farms.

Conclusion
Results showed that the use of milk MIR spectra with the 

aim of detecting lameness in cows still needs additional research. 
First, models need to defi ne precisely the target to be predicted 
and be more refi ned to take into account the diff erent sources 
of variation that exist in the fi eld, as only the most homogene-
ous data sets produced results that started to be interesting. 
Moreover, the specifi c nature of the used data requires the ad-
dition of more data coming from varied animals and farms and 
validation steps before using this technology on a larger scale. 
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