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Summary

Th e geographical patterns of genetic variation in domestic species are the outcome 
of spatially explicit demographic events. Technological advances have made the 
obtaining of spatial information easier and diff erent techniques have been developed 
to analyse spatial patterns of genetic variation. Relatively weak geographic trends 
found in sheep populations suggested the use of more powerful approaches, such as 
spatial principle component analysis. Th e aim of the study was to assess if application 
of spatial approach could reveal structures and patterns of genetic variation in 
indigenous Eastern Adriatic sheep breeds and contribute to our current knowledge 
about their genetic diff erentiation. We found south-east to north-west cline as the 
global structure using spatial principal component analysis, which outperformed 
the principal component analysis in this study and complemented understanding of 
variability of the investigated breeds reported in other multivariate and model-based 
clustering methods applied on this microsatellite data in previous research. Kernel 
density estimation suggested the Lika pramenka sheep belongs to a separate patch, 
not recognized in the spatial eff ects of the spatial principal component analysis. Th is 
potential structure should be further investigated.
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Introduction
Th e geographical patterns of genetic variation in a domestic 

species are the outcome of demographic events of domestica-
tion, migration, selection, isolation, and expansion of successful 
breeds, which are by themselves also spatially explicit (Manni 
et al., 2004). As technological advances have made obtaining 
spatial information easier, there is a strong interest to include 
them in the analysis of genetic data (Joost et al, 2010; Joost et 
al., 2015). Th e geographic mosaic of genotypes that refl ects the 
movement of alleles, the impact of genetic bottlenecks, and the 
eff ects of local selection pressures (spatially and temporally) 
could be used to infer evolutionary history and the processes 
that have shaped these geographic patterns in domestic animals 
(Laloë et al., 2010), for conservation purposes (Ruiz-Garcia and 
Jordana, 2000) or for learning about the adaptation of domestic 
animals to diff erent environments (Pariset et al., 2012). In do-
mestic animal conservation, breed is usually the object of con-
servation eff orts, and spatial data is proposed for integration in 
the analyses of conservation of farm animal genetic resourc-
es (Duruz et al., 2017), even though the guidelines for genetic 
characterization of genetic resources only state its importance 
in visualisation (FAO, 2011.) 

Diff erent techniques have been developed to analyse spatial 
patterns of genetic variation among populations exploiting the 
geographic dimension of genetic data (François and Waits, 2016; 
Manel et al., 2003). Spatial auto-correlation analysis (Smouse 
and Peakall, 1999) is the initial approach to detect if proximate 
entities are more or less similar than expected for a random dis-
tribution (Ruiz-Garcia and Jordana, 2000). Mantel correlogram 
detects spatial structuring, without providing visualization of 
the spatial patterns (Legendre and Legendre, 1998). Diff erent 
model based clustering approaches are inappropriate strategy 
when individuals are genetically structured as a cline (Jombart 
et al., 2008). Widely used exploratory alternatives are reduced 
space ordination methods, such as principle component analy-
sis (PCA) (Patterson et al., 2006). Spatial multivariate methods, 
namely spatial principle component analysis (sPCA) and spatial 
multidimensional scaling (sMDS), are recommended tools for 
describing the correlation of genetic variation of domestic ani-
mals with geography by Laloë et al. (2010). Unlike PCA, they 

use explicit geographic information, location coordinates. Global 
structures (patches, clines, intermediates) are distinguished from 
local ones (strong genetic diff erences between neighbours) and 
from random noise. Diff erent patterns can be described in the 
revealed structuring: isolation by distance, clines, metapopula-
tions and barriers to gene fl ow. 

Th e aim of this study was to assess if application of spatial 
approach, namely sPCA, could reveal structures and patterns 
of genetic variation in indigenous Eastern Adriatic sheep breeds 
better than PCA, and contribute to our knowledge about their 
genetic diff erentiation.

Material and methods
Obtaining the genotypes on 28 microsatellite loci (392 al-

leles) of 317 animals was described in Salamon et al. (2014), 
where names of the markers and the diversity parameters for 
the markers are reported. Genotype data were converted into 
allele counts per population/breed. Animals were sampled from 
13 populations described in supplementary material of Salamon 
et al. (2014) and by Šalamon et al. (2015). Breed names, countries 
of origin, sample group abbreviations and geographical coordi-
nates are given in Table 1.

Calculations and visualizations were obtained using the R 
soft ware (R Core Team, 2011). First PCA, and then sPCA were 
performed with adegenet package (Jombart, 2008). Function 
scaleGen was used to scale and centre the data. Kernel density 
estimation on the three retained principal components was per-
formed to visualize structure identifi ed by PCA and sPCA. In 
Moran’s I test, performed in spdep package (Bivand and Piras, 
2015), and in sPCA, we used k-nearest neighbours connection 
network (k=4). Spatial structures detected by sPCA were tested 
using the global and local permutation tests using Moran’s eigen-
vector maps (Laloë et al., 2010). Th e confi rmed spatial structure 
is visualized on the altitude map of the sampling area in order 
to assess spatial patterns. Visualizations were performed using 
adegenet, maptools (Bivand and Lewin-Koh, 2017) and raster 
(Hijmans, 2016) packages. We checked if the fi rst two retained 
axes from PCA and sPCA were correlated. Also, spatial autocor-
relation of the fi rst three PCA axis was tested using Moran’s I test. 

Table 1. Th irteen sampled populations with sample abbreviations and locations of sampling

Sampled breed Group abbreviation Country of sampling Climate Longitude Latitude 
Cres Island Sheep CRE Croatia Subtropical 44.96732 14.40567 
Dalmatian Pramenka DAL Croatia Subtropical 43.92263 15.95975 
Istrian Sheep IST Croatia Subtropical 45.07881 13.88324 
Krk Island Sheep KRK Croatia Subtropical 45.09899 14.56650 
Kupres Pramenka KUP Bosnia and Herzegovina Highland 43.74753 17.36175 
Lika Pramenka LIK Croatia Highland 44.64939 15.54746 
Pag Island Sheep PAG Croatia Subtropical 44.48131 14.97608 
Privor Pramenka PRI Bosnia and Herzegovina Continental 43.86151 17.68529 
Rab Island Sheep RAB Croatia Subtropical 44.75275 14.78397 
Dubrovnik Ruda RUDA Croatia Mediterranean 42.78214 17.82512 
Istrian Pramenka SLO Slovenia Subtropical 45.51118 13.90069 
Stolac Pramenka STO Bosnia and Herzegovina Subtropical 43.34809 18.12578 
Vlašić Pramenka VLA Bosnia and Herzegovina Continental 43.77771 17.25128 
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Results and discussion
First three PCs (principal components) explained 34.62% of 

the genetic variability. Structure identifi ed by PCA fi rst three 
axes points to two patches, separating Lika Pramenka (LIK) as 
the most genetically diff erent. Kernel density estimation suggests 
that LIK sheep belongs to a separate patch (Figure 1. A). Even 
though the fi rst PC plotted onto the map exhibited two group 
of populations (from the northern part of the Eastern Adriatic, 
and from the Southern part), the pattern could not be identi-
fi ed as a cline or as two patches (Figure 1. B). As in the factorial 
correspondence analysis performed on the 12 Eastern Adriatic 
populations (43% of the variability explained in three compo-
nents) LIK is the most distinguished population (Salamon et 
al., 2014). Second PC also separates the Pag Island Sheep (PAG), 
Cres Island Sheep (CRE) and Krk Island Sheep (KRK) from 
the Rab Island Sheep (RAB), Istrian Sheep (IST) from Croatia 
and Istrian Pramenka from Slovenia (SLO). Th e third axis con-
tributes to separation of the SLO and IST populations from 
PAG, CRE, KRK, and RAB populations, as well as separation 
of Dubrovnik Ruda (RUDA) population from the Dalmatian 
Pramenka (DAL), Vlašić Pramenka (VLA), Kupres Pramenka 
(KUP), Stolac Pramenka (STO), Privor Pramenka (PRI) popula-
tions. Th e fi rst three axes were tested for spatial autocorrelation. 
Th e Moran’s I tests detected signifi cant autocorrelation in the 
scores of the fi rst PCA axis (I = 0.565, p < 0.01). Th e geographi-
cal component in the fi rst PC was also reported by Laloë et al. 
(2010). Th e other two PCs did not show spatial autocorrelation 
(I = 0.040, NS; I = -0.065, NS).

underlying spatial processes were random, and more of the spa-
tial content is explained by the fi rst sPC (Figure 2. B). Th e fi rst 
global scores component represents 18.4% of the total variation. 
According to Laloë et al. (2010), the fi rst PC and sPC in sheep 
populations were highly correlated. Th e same was found in our 
results (r2 = 0.845, p < 0.001). Th e negative scores (second sPC) 
did not exhibit a signifi cant local structure according to local 
permutation test (max(t) = 0.091, NS). Since the second sPC rep-
resents 22.3% of the total variation, it was used for the fi nal in-
terpretation (Figure 2. C. and D.). Lower correlation was found 
between the second sPC and the second PC (r2 = 0.648, p < 0.05).

Th e global scores of the fi rst sPC clearly diff erentiated the 
north-west (RAB, KRK, PAG, IST, CRE, SLO, LIK) from the 
south-east global structure (DAL, PRI, STO, KUP, VLA, RUDA) 
of populations (Figure 2. A). Kernel density estimation suggests 
this structure to be the larger patch showing substructure. Th e 
smaller patch suggested by the kernel density estimation contains 
only LIK population (Figure 2. A) and in sPCA this population is 
distinguished considering both sPCs. Lag vector of the fi rst sPC 
plotted on the altitude map reveals the fi rst global structure to 
be a cline spanning from southeast towards northwest (Figure 
2. B). Th e southwest to northwest cline was found in other sheep 
populations, but also in cattle and goat populations (Laloë et al., 
2010), and could be explained by SE-NW expansion aft er the 
domestication event. Local interpolation of scores points the 
steepest genetic diff erentiation south of Pag Island and Lika area 
where the red lines are concentrated, which is the area of DAL 
population (Figure 2. C). Similarly, model-based clustering in 

Figure 1.
Results of principal component analysis. 
A First and second principle axes shown 
with kernel density estimation to visualize 
structure in the data. B Representations of the 
first PC scores of the Eastern Adriatic sheep 
populations on the altitude map of Slovenia, 
Croatia and Bosnia and Herzegovina.

Th e fi rst two spatial principle components (sPCs) explained 
40% of the total variation, more than the tree PCs, and more 
than fi rst fi ve axes of the sPCA performed by Laloë et al. (2010) 
on microsatellite data of 46 sheep breeds. Global permutation 
test rejected the null-hypothesis of the absence of spatial struc-
ture (max(t) = 0.110, p < 0.05). Higher level of the spatial con-
tent was found in the fi rst sPC (I = 0.884) than in the fi rst PC 
(I = 0.565), indicating the spatial distribution of high scores in 
the dataset is more spatially clustered than would be expected if 

previous research proposed low cluster diff erentiation in DAL 
(Salamon et al., 2014). Second sPC divides the southern group 
DAL and PRI from STO, KUP, VLA and RUDA populations. 
It also divides LIK, IST, CRE and SLO populations from RAB, 
KRK and PAG populations in the northern group. Th is could be 
the reason why previous attempts with the hierarchical analy-
sis of molecular variance did not detect pronounced diff eren-
tiation between the mainland and the island breeds (Salamon 
et al., 2014). Th e fi nal result of the sPCA shown on Figure 2. D 
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presents the south-east to north-west cline and additional ge-
netic diff erentiation captured from the second sPC in red-green-
blue channel, emphasizing substructure of the northern part of 
the cline where SLO, IST and CRE are diff erentiated from KRK, 
RAB and PAG, and more pronouncedly from LIK population. 
In the southern part of the cline DAL and PRI are distinguished 
from STO, VLA, KUP and RUDA, with the last one showing 
more pronounced genetic diff erentiation inside its’ group when 
second sPC is considered.

Despite the weak spatial structuring in sheep populations 
(Laloë et al., 2010) in comparison with other farm animals of 
domestic species, spatial aspect shows certain value in multi-
variate discovery-based studies and exploits the whole diversity 
in the data. Since model based clustering methods are useful in 
explaining diversity of the breeds as the management units (FAO, 
2011), but are not recommended strategy when there is a cline 
structure behind the variability (Jombart et al., 2008), spatial 
multivariate methods should be used to understand the variabil-
ity, especially if the breed is not a distinct genetic population as 
in Eastern Adriatic or in Baltic sheep breeds (Tapio et al. 2005). 

Conclusion
Focusing the analysis on the part of the variance that is spa-

tially structured and using spatial information as a component of 
the optimized criterion in sPCA we have successfully retrieved 
south-east to north-west cline as the simple global structure, and 
even though the negative component did not have relevant spatial 
information, it provided explanation of the additional captured 

variation, and performed better than the PCA. Likewise, sPCA 
explained the variation better than other multivariate methods 
(factorial correspondence analysis) and model based structuring 
methods (structure and AMOVA). Further investigation encom-
passing more breeds could reveal if the pronounced genetic dif-
ferences found in LIK and RUDA sheep belong to certain spatial 
structure in general sheep population.
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